Spaces:
Running
Running
File size: 14,113 Bytes
9a98e24 15bcc0e 9a98e24 d6c271c 5826642 a07e9cb 5abeb6f f1233a2 b6d30cb ca01fa3 b6d30cb 9a98e24 e7fa7ee a07e9cb ca01fa3 f1233a2 5eed07a 15bcc0e e7fa7ee a07e9cb 15bcc0e a07e9cb 15bcc0e ef3b791 15bcc0e a07e9cb 9a98e24 15bcc0e 9a98e24 4bd97bb 9a98e24 4bd97bb 9a98e24 4bd97bb 15bcc0e a07e9cb 9a98e24 a07e9cb 15bcc0e a07e9cb 15bcc0e a07e9cb 5eed07a da1ea6b 2601533 a07e9cb da1ea6b a07e9cb da1ea6b 15bcc0e da1ea6b a07e9cb da1ea6b 2601533 da1ea6b a07e9cb 2601533 a07e9cb 2601533 da1ea6b a07e9cb 15bcc0e a07e9cb da1ea6b a07e9cb da1ea6b 15bcc0e da1ea6b 15bcc0e a07e9cb 15bcc0e e7fa7ee ca01fa3 9a98e24 15bcc0e ca01fa3 d6c271c 9a98e24 f1233a2 d6c271c 6c9b792 d6c271c 6c9b792 ef3b791 d6c271c ef3b791 e7fa7ee 9e91869 15bcc0e ca01fa3 e7fa7ee 15bcc0e 5882a26 2601533 15bcc0e b6d30cb 9a98e24 5826642 15bcc0e b6d30cb f1233a2 9a98e24 03b7855 9a98e24 5abeb6f 9a98e24 5abeb6f 9a98e24 e7fa7ee 15bcc0e 1b0481a 15bcc0e 942065e b6d30cb cc511e2 1c50522 cc511e2 15bcc0e ca01fa3 da1ea6b 5826642 15bcc0e 1c50522 ef3b791 15bcc0e ef3b791 15bcc0e a18645a 9a98e24 da1ea6b ac9f9c5 15bcc0e ac9f9c5 15bcc0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
"""Graph analytics operations. To be split into separate files when we have more."""
import os
import fsspec
from lynxkite.core import ops
from collections import deque
import dataclasses
import functools
import grandcypher
import joblib
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import traceback
import typing
mem = joblib.Memory("../joblib-cache")
ENV = "LynxKite Graph Analytics"
op = ops.op_registration(ENV)
@dataclasses.dataclass
class RelationDefinition:
"""Defines a set of edges."""
df: str # The DataFrame that contains the edges.
source_column: (
str # The column in the edge DataFrame that contains the source node ID.
)
target_column: (
str # The column in the edge DataFrame that contains the target node ID.
)
source_table: str # The DataFrame that contains the source nodes.
target_table: str # The DataFrame that contains the target nodes.
source_key: str # The column in the source table that contains the node ID.
target_key: str # The column in the target table that contains the node ID.
@dataclasses.dataclass
class Bundle:
"""A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
It can also carry other data, such as a trained model.
"""
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = None
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes["id"] = nodes.index
if "index" in nodes.columns:
nodes.drop(columns=["index"], inplace=True)
return cls(
dfs={"edges": edges, "nodes": nodes},
relations=[
RelationDefinition(
df="edges",
source_column="source",
target_column="target",
source_table="nodes",
target_table="nodes",
source_key="id",
target_key="id",
)
],
)
@classmethod
def from_df(cls, df: pd.DataFrame):
return cls(dfs={"df": df})
def to_nx(self):
# TODO: Use relations.
graph = nx.DiGraph()
if "nodes" in self.dfs:
graph.add_nodes_from(
self.dfs["nodes"].set_index("id").to_dict("index").items()
)
graph.add_edges_from(
self.dfs["edges"][["source", "target"]].itertuples(index=False, name=None)
)
return graph
def copy(self):
"""Returns a medium depth copy of the bundle. The Bundle is completely new, but the DataFrames and RelationDefinitions are shared."""
return Bundle(
dfs=dict(self.dfs),
relations=list(self.relations),
other=dict(self.other) if self.other else None,
)
def nx_node_attribute_func(name):
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws):
"""If an input plug is connected to multiple edges, keep only the last edge."""
seen = set()
for edge in reversed(ws.edges):
if (edge.target, edge.targetHandle) in seen:
ws.edges.remove(edge)
seen.add((edge.target, edge.targetHandle))
@ops.register_executor(ENV)
async def execute(ws):
catalog: dict[str, ops.Op] = ops.CATALOGS[ENV]
disambiguate_edges(ws)
outputs = {}
failed = 0
while len(outputs) + failed < len(ws.nodes):
for node in ws.nodes:
if node.id in outputs:
continue
# TODO: Take the input/output handles into account.
inputs = [edge.source for edge in ws.edges if edge.target == node.id]
if all(input in outputs for input in inputs):
# All inputs for this node are ready, we can compute the output.
inputs = [outputs[input] for input in inputs]
data = node.data
params = {**data.params}
op = catalog.get(data.title)
if not op:
data.error = "Operation not found in catalog"
failed += 1
continue
try:
# Convert inputs types to match operation signature.
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
if p.type == nx.Graph and isinstance(x, Bundle):
inputs[i] = x.to_nx()
elif p.type == Bundle and isinstance(x, nx.Graph):
inputs[i] = Bundle.from_nx(x)
elif p.type == Bundle and isinstance(x, pd.DataFrame):
inputs[i] = Bundle.from_df(x)
output = op(*inputs, **params)
except Exception as e:
traceback.print_exc()
data.error = str(e)
failed += 1
continue
if len(op.inputs) == 1 and op.inputs.get("multi") == "*":
# It's a flexible input. Create n+1 handles.
data.inputs = {f"input{i}": None for i in range(len(inputs) + 1)}
data.error = None
outputs[node.id] = output
if (
op.type == "visualization"
or op.type == "table_view"
or op.type == "image"
):
data.display = output
@op("Import Parquet")
def import_parquet(*, filename: str):
"""Imports a Parquet file."""
return pd.read_parquet(filename)
@mem.cache
@op("Import CSV")
def import_csv(
*, filename: str, columns: str = "<from file>", separator: str = "<auto>"
):
"""Imports a CSV file."""
return pd.read_csv(
filename,
names=pd.api.extensions.no_default
if columns == "<from file>"
else columns.split(","),
sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
)
@mem.cache
@op("Import GraphML")
def import_graphml(*, filename: str):
"""Imports a GraphML file."""
files = fsspec.open_files(filename, compression="infer")
for f in files:
if ".graphml" in f.path:
with f as f:
return nx.read_graphml(f)
raise ValueError(f"No .graphml file found at {filename}")
@mem.cache
@op("Graph from OSM")
def import_osm(*, location: str):
import osmnx as ox
return ox.graph.graph_from_place(location, network_type="drive")
@op("Create scale-free graph")
def create_scale_free_graph(*, nodes: int = 10):
"""Creates a scale-free graph with the given number of nodes."""
return nx.scale_free_graph(nodes)
@op("Compute PageRank")
@nx_node_attribute_func("pagerank")
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
# TODO: This requires scipy to be installed.
return nx.pagerank(graph, alpha=damping, max_iter=iterations)
@op("Compute betweenness centrality")
@nx_node_attribute_func("betweenness_centrality")
def compute_betweenness_centrality(graph: nx.Graph, *, k=10):
return nx.betweenness_centrality(graph, k=k, backend="cugraph")
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("Discard parallel edges")
def discard_parallel_edges(graph: nx.Graph):
return nx.DiGraph(graph)
@op("SQL")
def sql(bundle: Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
with pl.Config() as cfg:
cfg.set_verbose(True)
res = (
pl.SQLContext(bundle.dfs)
.execute(query)
.collect(engine="gpu")
.to_pandas()
)
# TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
# which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
else:
res = pl.SQLContext(bundle.dfs).execute(query).collect().to_pandas()
bundle.dfs[save_as] = res
return bundle
@op("Cypher")
def cypher(bundle: Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a Cypher query on the graph in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
graph = bundle.to_nx()
res = grandcypher.GrandCypher(graph).run(query)
bundle.dfs[save_as] = pd.DataFrame(res)
return bundle
@op("Organize bundle")
def organize_bundle(bundle: Bundle, *, code: ops.LongStr):
"""Lets you rename/copy/delete DataFrames, and modify relations.
TODO: Use a declarative solution instead of Python code. Add UI.
"""
bundle = bundle.copy()
exec(code, globals(), {"bundle": bundle})
return bundle
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
"""Takes a (preferably connected) subgraph."""
sample = set()
to_expand = deque([next(graph.nodes.keys().__iter__())])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
if pd.api.types.is_numeric_dtype(value):
cmap = matplotlib.cm.get_cmap("viridis")
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value)
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in rgba[:, :3]
]
else:
cmap = matplotlib.cm.get_cmap("Paired")
categories = pd.Index(value.unique())
colors = cmap.colors[: len(categories)]
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in [
colors[min(len(colors) - 1, categories.get_loc(v))] for v in value
]
]
@op("Visualize graph", view="visualization")
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
nodes = graph.dfs["nodes"].copy()
if color_nodes_by:
nodes["color"] = _map_color(nodes[color_nodes_by])
for cols in ["x y", "long lat"]:
x, y = cols.split()
if (
x in nodes.columns
and nodes[x].dtype == "float64"
and y in nodes.columns
and nodes[y].dtype == "float64"
):
cx, cy = nodes[x].mean(), nodes[y].mean()
dx, dy = nodes[x].std(), nodes[y].std()
# Scale up to avoid float precision issues and because eCharts omits short edges.
scale_x = 100 / max(dx, dy)
scale_y = scale_x
if y == "lat":
scale_y *= -1
pos = {
node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
for node_id, row in nodes.iterrows()
}
curveness = 0 # Street maps are better with straight streets.
break
else:
pos = nx.spring_layout(
graph.to_nx(), iterations=max(1, int(10000 / len(nodes)))
)
curveness = 0.3
nodes = nodes.to_records()
edges = graph.dfs["edges"].drop_duplicates(["source", "target"])
edges = edges.to_records()
v = {
"animationDuration": 500,
"animationEasingUpdate": "quinticInOut",
"series": [
{
"type": "graph",
"roam": True,
"lineStyle": {
"color": "gray",
"curveness": curveness,
},
"emphasis": {
"focus": "adjacency",
"lineStyle": {
"width": 10,
},
},
"data": [
{
"id": str(n.id),
"x": float(pos[n.id][0]),
"y": float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
"symbolSize": 50 / len(nodes) ** 0.5,
"itemStyle": {"color": n.color} if color_nodes_by else {},
}
for n in nodes
],
"links": [
{"source": str(r.source), "target": str(r.target)} for r in edges
],
},
],
}
return v
def collect(df: pd.DataFrame):
if isinstance(df, pl.LazyFrame):
df = df.collect()
if isinstance(df, pl.DataFrame):
return [[d[c] for c in df.columns] for d in df.to_dicts()]
return df.values.tolist()
@op("View tables", view="table_view")
def view_tables(bundle: Bundle, *, limit: int = 100):
v = {
"dataframes": {
name: {
"columns": [str(c) for c in df.columns],
"data": collect(df)[:limit],
}
for name, df in bundle.dfs.items()
},
"relations": bundle.relations,
"other": bundle.other,
}
return v
|