Spaces:
Running
Running
File size: 9,720 Bytes
9cc1fee d8f90d7 9cc1fee 03b7855 9cc1fee 03b7855 d8f90d7 03b7855 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee d8f90d7 0213da5 9cc1fee d8f90d7 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee 03b7855 d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee d8f90d7 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee 0213da5 9cc1fee d8f90d7 9cc1fee d8f90d7 b34d742 03b7855 d8f90d7 03b7855 d8f90d7 03b7855 d8f90d7 03b7855 d8f90d7 03b7855 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
LynxScribe configuration and testing in LynxKite.
"""
from lynxscribe.core.llm.base import get_llm_engine
from lynxscribe.core.vector_store.base import get_vector_store
from lynxscribe.common.config import load_config
from lynxscribe.components.text.embedder import TextEmbedder
from lynxscribe.components.rag.rag_graph import RAGGraph
from lynxscribe.components.rag.knowledge_base_graph import PandasKnowledgeBaseGraph
from lynxscribe.components.rag.rag_chatbot import Scenario, ScenarioSelector, RAGChatbot
from lynxscribe.components.chat.processors import (
ChatProcessor,
MaskTemplate,
TruncateHistory,
)
from lynxscribe.components.chat.api import ChatAPI, ChatAPIRequest, ChatAPIResponse
from . import ops
import json
from .executors import one_by_one
ENV = "LynxScribe"
one_by_one.register(ENV)
op = ops.op_registration(ENV)
output_on_top = ops.output_position(output="top")
@output_on_top
@op("Vector store")
def vector_store(*, name="chromadb", collection_name="lynx"):
vector_store = get_vector_store(name=name, collection_name=collection_name)
return {"vector_store": vector_store}
@output_on_top
@op("LLM")
def llm(*, name="openai"):
llm = get_llm_engine(name=name)
return {"llm": llm}
@output_on_top
@ops.input_position(llm="bottom")
@op("Text embedder")
def text_embedder(llm, *, model="text-embedding-ada-002"):
llm = llm[0]["llm"]
text_embedder = TextEmbedder(llm=llm, model=model)
return {"text_embedder": text_embedder}
@output_on_top
@ops.input_position(vector_store="bottom", text_embedder="bottom")
@op("RAG graph")
def rag_graph(vector_store, text_embedder):
vector_store = vector_store[0]["vector_store"]
text_embedder = text_embedder[0]["text_embedder"]
rag_graph = RAGGraph(
PandasKnowledgeBaseGraph(vector_store=vector_store, text_embedder=text_embedder)
)
return {"rag_graph": rag_graph}
@output_on_top
@op("Scenario selector")
def scenario_selector(*, scenario_file: str, node_types="intent_cluster"):
scenarios = load_config(scenario_file)
node_types = [t.strip() for t in node_types.split(",")]
scenario_selector = ScenarioSelector(
scenarios=[Scenario(**scenario) for scenario in scenarios],
node_types=node_types,
)
return {"scenario_selector": scenario_selector}
DEFAULT_NEGATIVE_ANSWER = "I'm sorry, but the data I've been trained on does not contain any information related to your question."
@output_on_top
@ops.input_position(rag_graph="bottom", scenario_selector="bottom", llm="bottom")
@op("RAG chatbot")
def rag_chatbot(
rag_graph,
scenario_selector,
llm,
*,
negative_answer=DEFAULT_NEGATIVE_ANSWER,
limits_by_type="{}",
strict_limits=True,
max_results=5,
):
rag_graph = rag_graph[0]["rag_graph"]
scenario_selector = scenario_selector[0]["scenario_selector"]
llm = llm[0]["llm"]
limits_by_type = json.loads(limits_by_type)
rag_chatbot = RAGChatbot(
rag_graph=rag_graph,
scenario_selector=scenario_selector,
llm=llm,
negative_answer=negative_answer,
limits_by_type=limits_by_type,
strict_limits=strict_limits,
max_results=max_results,
)
return {"chatbot": rag_chatbot}
@output_on_top
@ops.input_position(processor="bottom")
@op("Chat processor")
def chat_processor(processor, *, _ctx: one_by_one.Context):
cfg = _ctx.last_result or {
"question_processors": [],
"answer_processors": [],
"masks": [],
}
for f in ["question_processor", "answer_processor", "mask"]:
if f in processor:
cfg[f + "s"].append(processor[f])
question_processors = cfg["question_processors"][:]
answer_processors = cfg["answer_processors"][:]
masking_templates = {}
for mask in cfg["masks"]:
masking_templates[mask["name"]] = mask
if masking_templates:
question_processors.append(MaskTemplate(masking_templates=masking_templates))
answer_processors.append(MaskTemplate(masking_templates=masking_templates))
chat_processor = ChatProcessor(
question_processors=question_processors, answer_processors=answer_processors
)
return {"chat_processor": chat_processor, **cfg}
@output_on_top
@op("Truncate history")
def truncate_history(*, max_tokens=10000):
return {"question_processor": TruncateHistory(max_tokens=max_tokens)}
@output_on_top
@op("Mask")
def mask(*, name="", regex="", exceptions="", mask_pattern=""):
exceptions = [e.strip() for e in exceptions.split(",") if e.strip()]
return {
"mask": {
"name": name,
"regex": regex,
"exceptions": exceptions,
"mask_pattern": mask_pattern,
}
}
@ops.input_position(chat_api="bottom")
@op("Test Chat API")
async def test_chat_api(message, chat_api, *, show_details=False):
chat_api = chat_api[0]["chat_api"]
request = ChatAPIRequest(
session_id="b43215a0-428f-11ef-9454-0242ac120002",
question=message["text"],
history=[],
)
response = await chat_api.answer(request)
if show_details:
return {**response.__dict__}
else:
return {"answer": response.answer}
@op("Input chat")
def input_chat(*, chat: str):
return {"text": chat}
@output_on_top
@ops.input_position(chatbot="bottom", chat_processor="bottom", knowledge_base="bottom")
@op("Chat API")
def chat_api(chatbot, chat_processor, knowledge_base, *, model="gpt-4o-mini"):
chatbot = chatbot[0]["chatbot"]
chat_processor = chat_processor[0]["chat_processor"]
knowledge_base = knowledge_base[0]
c = ChatAPI(
chatbot=chatbot,
chat_processor=chat_processor,
model=model,
)
if knowledge_base:
c.chatbot.rag_graph.kg_base.load_v1_knowledge_base(**knowledge_base)
c.chatbot.scenario_selector.check_compatibility(c.chatbot.rag_graph)
return {"chat_api": c}
@output_on_top
@op("Knowledge base")
def knowledge_base(
*,
nodes_path="nodes.pickle",
edges_path="edges.pickle",
template_cluster_path="tempclusters.pickle",
):
return {
"nodes_path": nodes_path,
"edges_path": edges_path,
"template_cluster_path": template_cluster_path,
}
@op("View", view="table_view")
def view(input):
columns = [str(c) for c in input.keys() if not str(c).startswith("_")]
v = {
"dataframes": {
"df": {
"columns": columns,
"data": [[input[c] for c in columns]],
}
}
}
return v
async def get_chat_api(ws):
import pathlib
from . import workspace
DATA_PATH = pathlib.Path.cwd() / "data"
path = DATA_PATH / ws
assert path.is_relative_to(DATA_PATH)
assert path.exists(), f"Workspace {path} does not exist"
ws = workspace.load(path)
contexts = await ops.EXECUTORS[ENV](ws)
nodes = [op for op in ws.nodes if op.data.title == "Chat API"]
[node] = nodes
context = contexts[node.id]
return context.last_result["chat_api"]
async def stream_chat_api_response(request):
chat_api = await get_chat_api(request["model"])
chat_api_request = ChatAPIRequest(
session_id=request.get("session_id", "00000000-0000-0000-0000-000000000000"),
history=request["messages"][:-1],
question=request["messages"][-1]["content"],
)
response = await chat_api.answer(chat_api_request)
response = response.model_dump()
yield json.dumps(
{
**response,
"id": "asd",
"object": "chat.completion.chunk",
"model": request["model"],
"choices": [
{
"index": 0,
"delta": {"role": "assistant", "content": response["answer"]},
}
],
}
)
async def api_service_post(request):
"""
Serves a chat endpoint that matches LynxScribe's interface.
To access it you need to add the "module" and "workspace"
parameters.
The workspace must contain exactly one "Chat API" node.
curl -X POST ${LYNXKITE_URL}/api/service/server.lynxkite_ops \
-H "Content-Type: application/json" \
-d '{
"model": "LynxScribe demo",
"messages": [{"role": "user", "content": "what does the fox say"}]
}'
"""
path = "/".join(request.url.path.split("/")[4:])
request = await request.json()
if path == "chat/completions":
from sse_starlette.sse import EventSourceResponse
return EventSourceResponse(stream_chat_api_response(request))
return {"error": "Not found"}
async def api_service_get(request):
path = "/".join(request.url.path.split("/")[4:])
if path == "models":
return {
"object": "list",
"data": [
{
"id": ws,
"object": "model",
"created": 0,
"owned_by": "lynxkite",
"meta": {"profile_image_url": "https://lynxkite.com/favicon.png"},
}
for ws in get_lynxscribe_workspaces()
],
}
return {"error": "Not found"}
def get_lynxscribe_workspaces():
import pathlib
from . import workspace
DATA_DIR = pathlib.Path.cwd() / "data"
workspaces = []
for p in DATA_DIR.glob("**/*"):
if p.is_file():
try:
ws = workspace.load(p)
if ws.env == ENV:
workspaces.append(p.relative_to(DATA_DIR))
except Exception:
pass # Ignore files that are not valid workspaces.
workspaces.sort()
return workspaces
|