Spaces:
Running
Running
Fix caching, move outputs on top.
Browse files- data/LynxScribe demo +46 -70
- requirements.txt +1 -0
- server/executors/one_by_one.py +14 -5
- server/lynxscribe_ops.py +19 -4
data/LynxScribe demo
CHANGED
|
@@ -56,7 +56,7 @@
|
|
| 56 |
],
|
| 57 |
"data": [
|
| 58 |
[
|
| 59 |
-
"Az élet titka
|
| 60 |
]
|
| 61 |
]
|
| 62 |
}
|
|
@@ -114,7 +114,7 @@
|
|
| 114 |
"type": {
|
| 115 |
"type": "None"
|
| 116 |
},
|
| 117 |
-
"position": "
|
| 118 |
}
|
| 119 |
},
|
| 120 |
"type": "basic",
|
|
@@ -122,8 +122,8 @@
|
|
| 122 |
}
|
| 123 |
},
|
| 124 |
"position": {
|
| 125 |
-
"x": -
|
| 126 |
-
"y":
|
| 127 |
},
|
| 128 |
"parentId": null
|
| 129 |
},
|
|
@@ -163,7 +163,7 @@
|
|
| 163 |
"type": {
|
| 164 |
"type": "None"
|
| 165 |
},
|
| 166 |
-
"position": "
|
| 167 |
}
|
| 168 |
},
|
| 169 |
"type": "basic",
|
|
@@ -171,8 +171,8 @@
|
|
| 171 |
}
|
| 172 |
},
|
| 173 |
"position": {
|
| 174 |
-
"x": -
|
| 175 |
-
"y":
|
| 176 |
},
|
| 177 |
"parentId": null
|
| 178 |
},
|
|
@@ -217,7 +217,7 @@
|
|
| 217 |
"type": {
|
| 218 |
"type": "<class 'inspect._empty'>"
|
| 219 |
},
|
| 220 |
-
"position": "
|
| 221 |
}
|
| 222 |
},
|
| 223 |
"outputs": {
|
|
@@ -226,7 +226,7 @@
|
|
| 226 |
"type": {
|
| 227 |
"type": "None"
|
| 228 |
},
|
| 229 |
-
"position": "
|
| 230 |
}
|
| 231 |
},
|
| 232 |
"type": "basic",
|
|
@@ -234,7 +234,7 @@
|
|
| 234 |
}
|
| 235 |
},
|
| 236 |
"position": {
|
| 237 |
-
"x": -
|
| 238 |
"y": 235.19823621492515
|
| 239 |
},
|
| 240 |
"parentId": null
|
|
@@ -283,7 +283,7 @@
|
|
| 283 |
"type": {
|
| 284 |
"type": "None"
|
| 285 |
},
|
| 286 |
-
"position": "
|
| 287 |
}
|
| 288 |
},
|
| 289 |
"type": "basic",
|
|
@@ -291,8 +291,8 @@
|
|
| 291 |
}
|
| 292 |
},
|
| 293 |
"position": {
|
| 294 |
-
"x":
|
| 295 |
-
"y":
|
| 296 |
},
|
| 297 |
"parentId": null
|
| 298 |
},
|
|
@@ -303,10 +303,7 @@
|
|
| 303 |
"title": "RAG chatbot",
|
| 304 |
"params": {
|
| 305 |
"negative_answer": "I'm sorry, but the data I've been trained on does not contain any information related to your question.",
|
| 306 |
-
"
|
| 307 |
-
"max_information": 3,
|
| 308 |
-
"min_summary": 2,
|
| 309 |
-
"max_summary": 3,
|
| 310 |
"strict_limits": true,
|
| 311 |
"max_results": 5
|
| 312 |
},
|
|
@@ -322,32 +319,11 @@
|
|
| 322 |
"type": "<class 'str'>"
|
| 323 |
}
|
| 324 |
},
|
| 325 |
-
"
|
| 326 |
-
"name": "
|
| 327 |
-
"default":
|
| 328 |
-
"type": {
|
| 329 |
-
"type": "<class 'int'>"
|
| 330 |
-
}
|
| 331 |
-
},
|
| 332 |
-
"max_information": {
|
| 333 |
-
"name": "max_information",
|
| 334 |
-
"default": 3,
|
| 335 |
-
"type": {
|
| 336 |
-
"type": "<class 'int'>"
|
| 337 |
-
}
|
| 338 |
-
},
|
| 339 |
-
"min_summary": {
|
| 340 |
-
"name": "min_summary",
|
| 341 |
-
"default": 2,
|
| 342 |
"type": {
|
| 343 |
-
"type": "<class '
|
| 344 |
-
}
|
| 345 |
-
},
|
| 346 |
-
"max_summary": {
|
| 347 |
-
"name": "max_summary",
|
| 348 |
-
"default": 3,
|
| 349 |
-
"type": {
|
| 350 |
-
"type": "<class 'int'>"
|
| 351 |
}
|
| 352 |
},
|
| 353 |
"strict_limits": {
|
|
@@ -394,7 +370,7 @@
|
|
| 394 |
"type": {
|
| 395 |
"type": "None"
|
| 396 |
},
|
| 397 |
-
"position": "
|
| 398 |
}
|
| 399 |
},
|
| 400 |
"type": "basic",
|
|
@@ -403,12 +379,12 @@
|
|
| 403 |
"beingResized": false
|
| 404 |
},
|
| 405 |
"position": {
|
| 406 |
-
"x": -
|
| 407 |
-
"y":
|
| 408 |
},
|
| 409 |
"parentId": null,
|
| 410 |
-
"width":
|
| 411 |
-
"height":
|
| 412 |
},
|
| 413 |
{
|
| 414 |
"id": "RAG graph 1",
|
|
@@ -443,7 +419,7 @@
|
|
| 443 |
"type": {
|
| 444 |
"type": "None"
|
| 445 |
},
|
| 446 |
-
"position": "
|
| 447 |
}
|
| 448 |
},
|
| 449 |
"type": "basic",
|
|
@@ -451,8 +427,8 @@
|
|
| 451 |
}
|
| 452 |
},
|
| 453 |
"position": {
|
| 454 |
-
"x": -
|
| 455 |
-
"y":
|
| 456 |
},
|
| 457 |
"parentId": null
|
| 458 |
},
|
|
@@ -492,7 +468,7 @@
|
|
| 492 |
"type": {
|
| 493 |
"type": "None"
|
| 494 |
},
|
| 495 |
-
"position": "
|
| 496 |
}
|
| 497 |
},
|
| 498 |
"type": "basic",
|
|
@@ -501,8 +477,8 @@
|
|
| 501 |
"beingResized": false
|
| 502 |
},
|
| 503 |
"position": {
|
| 504 |
-
"x": -
|
| 505 |
-
"y":
|
| 506 |
},
|
| 507 |
"parentId": null,
|
| 508 |
"width": 275,
|
|
@@ -544,7 +520,7 @@
|
|
| 544 |
"type": {
|
| 545 |
"type": "None"
|
| 546 |
},
|
| 547 |
-
"position": "
|
| 548 |
}
|
| 549 |
},
|
| 550 |
"type": "basic",
|
|
@@ -552,8 +528,8 @@
|
|
| 552 |
}
|
| 553 |
},
|
| 554 |
"position": {
|
| 555 |
-
"x": -
|
| 556 |
-
"y":
|
| 557 |
},
|
| 558 |
"parentId": null
|
| 559 |
},
|
|
@@ -585,7 +561,7 @@
|
|
| 585 |
"type": {
|
| 586 |
"type": "None"
|
| 587 |
},
|
| 588 |
-
"position": "
|
| 589 |
}
|
| 590 |
},
|
| 591 |
"type": "basic",
|
|
@@ -593,8 +569,8 @@
|
|
| 593 |
}
|
| 594 |
},
|
| 595 |
"position": {
|
| 596 |
-
"x": -
|
| 597 |
-
"y":
|
| 598 |
},
|
| 599 |
"parentId": null
|
| 600 |
},
|
|
@@ -634,7 +610,7 @@
|
|
| 634 |
"type": {
|
| 635 |
"type": "None"
|
| 636 |
},
|
| 637 |
-
"position": "
|
| 638 |
}
|
| 639 |
},
|
| 640 |
"type": "basic",
|
|
@@ -642,8 +618,8 @@
|
|
| 642 |
}
|
| 643 |
},
|
| 644 |
"position": {
|
| 645 |
-
"x":
|
| 646 |
-
"y":
|
| 647 |
},
|
| 648 |
"parentId": null
|
| 649 |
},
|
|
@@ -664,7 +640,7 @@
|
|
| 664 |
"type": {
|
| 665 |
"type": "<class 'inspect._empty'>"
|
| 666 |
},
|
| 667 |
-
"position": "
|
| 668 |
}
|
| 669 |
},
|
| 670 |
"outputs": {
|
|
@@ -673,7 +649,7 @@
|
|
| 673 |
"type": {
|
| 674 |
"type": "None"
|
| 675 |
},
|
| 676 |
-
"position": "
|
| 677 |
}
|
| 678 |
},
|
| 679 |
"type": "basic",
|
|
@@ -784,7 +760,7 @@
|
|
| 784 |
"type": {
|
| 785 |
"type": "None"
|
| 786 |
},
|
| 787 |
-
"position": "
|
| 788 |
}
|
| 789 |
},
|
| 790 |
"type": "basic",
|
|
@@ -792,8 +768,8 @@
|
|
| 792 |
}
|
| 793 |
},
|
| 794 |
"position": {
|
| 795 |
-
"x":
|
| 796 |
-
"y":
|
| 797 |
},
|
| 798 |
"parentId": null
|
| 799 |
},
|
|
@@ -849,7 +825,7 @@
|
|
| 849 |
"type": {
|
| 850 |
"type": "None"
|
| 851 |
},
|
| 852 |
-
"position": "
|
| 853 |
}
|
| 854 |
},
|
| 855 |
"type": "basic",
|
|
@@ -857,8 +833,8 @@
|
|
| 857 |
}
|
| 858 |
},
|
| 859 |
"position": {
|
| 860 |
-
"x":
|
| 861 |
-
"y":
|
| 862 |
},
|
| 863 |
"parentId": null
|
| 864 |
}
|
|
|
|
| 56 |
],
|
| 57 |
"data": [
|
| 58 |
[
|
| 59 |
+
"Az élet titka sok ember számára különböző lehet, és sok tényezőtől függ, mint például a személyes értékek, tapasztalatok és célok. Néhány általános gondolat az élet titkairól:\n\n- **Kapcsolatok**: A szeretet és az emberi kapcsolatok nagyon fontosak, hiszen ezek adhatják az élet értelmét.\n- **Önmegvalósítás**: Az, hogy megtaláljuk a szenvedélyeinket és céljainkat, segíthet abban, hogy boldogan éljünk.\n- **Folyamatos tanulás**: Az élet folyamatos tanulás, amely segít fejlődni és alkalmazkodni a változásokhoz.\n- **Egészség**: A fizikai és mentális egészség megőrzése alapvető az életminőség szempontjából.\n\nEzek persze csak általános nézőpontok, és mindenki másképp találhatja meg a saját életének a titkát. Te mivel kapcsolatban keresed az élet titkát?\n\nPlease visit <a href='https://www.linkedin.com/in/g%c3%a1bor-benedek-95578717' target='_blank'>https://www.linkedin.com/in/g%c3%a1bor-benedek-95578717</a> for further information."
|
| 60 |
]
|
| 61 |
]
|
| 62 |
}
|
|
|
|
| 114 |
"type": {
|
| 115 |
"type": "None"
|
| 116 |
},
|
| 117 |
+
"position": "top"
|
| 118 |
}
|
| 119 |
},
|
| 120 |
"type": "basic",
|
|
|
|
| 122 |
}
|
| 123 |
},
|
| 124 |
"position": {
|
| 125 |
+
"x": -312.5774211084781,
|
| 126 |
+
"y": 1093.4019527511366
|
| 127 |
},
|
| 128 |
"parentId": null
|
| 129 |
},
|
|
|
|
| 163 |
"type": {
|
| 164 |
"type": "None"
|
| 165 |
},
|
| 166 |
+
"position": "top"
|
| 167 |
}
|
| 168 |
},
|
| 169 |
"type": "basic",
|
|
|
|
| 171 |
}
|
| 172 |
},
|
| 173 |
"position": {
|
| 174 |
+
"x": -549.1300345090008,
|
| 175 |
+
"y": 1086.4852248156676
|
| 176 |
},
|
| 177 |
"parentId": null
|
| 178 |
},
|
|
|
|
| 217 |
"type": {
|
| 218 |
"type": "<class 'inspect._empty'>"
|
| 219 |
},
|
| 220 |
+
"position": "bottom"
|
| 221 |
}
|
| 222 |
},
|
| 223 |
"outputs": {
|
|
|
|
| 226 |
"type": {
|
| 227 |
"type": "None"
|
| 228 |
},
|
| 229 |
+
"position": "top"
|
| 230 |
}
|
| 231 |
},
|
| 232 |
"type": "basic",
|
|
|
|
| 234 |
}
|
| 235 |
},
|
| 236 |
"position": {
|
| 237 |
+
"x": -46.94726514341976,
|
| 238 |
"y": 235.19823621492515
|
| 239 |
},
|
| 240 |
"parentId": null
|
|
|
|
| 283 |
"type": {
|
| 284 |
"type": "None"
|
| 285 |
},
|
| 286 |
+
"position": "top"
|
| 287 |
}
|
| 288 |
},
|
| 289 |
"type": "basic",
|
|
|
|
| 291 |
}
|
| 292 |
},
|
| 293 |
"position": {
|
| 294 |
+
"x": 382.20164582795104,
|
| 295 |
+
"y": 533.2833307141879
|
| 296 |
},
|
| 297 |
"parentId": null
|
| 298 |
},
|
|
|
|
| 303 |
"title": "RAG chatbot",
|
| 304 |
"params": {
|
| 305 |
"negative_answer": "I'm sorry, but the data I've been trained on does not contain any information related to your question.",
|
| 306 |
+
"limits_by_type": "{\"information\": [2, 3], \"summary\": [2, 3]}",
|
|
|
|
|
|
|
|
|
|
| 307 |
"strict_limits": true,
|
| 308 |
"max_results": 5
|
| 309 |
},
|
|
|
|
| 319 |
"type": "<class 'str'>"
|
| 320 |
}
|
| 321 |
},
|
| 322 |
+
"limits_by_type": {
|
| 323 |
+
"name": "limits_by_type",
|
| 324 |
+
"default": "{}",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
"type": {
|
| 326 |
+
"type": "<class 'str'>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
}
|
| 328 |
},
|
| 329 |
"strict_limits": {
|
|
|
|
| 370 |
"type": {
|
| 371 |
"type": "None"
|
| 372 |
},
|
| 373 |
+
"position": "top"
|
| 374 |
}
|
| 375 |
},
|
| 376 |
"type": "basic",
|
|
|
|
| 379 |
"beingResized": false
|
| 380 |
},
|
| 381 |
"position": {
|
| 382 |
+
"x": -521.6507639530705,
|
| 383 |
+
"y": 547.294980747757
|
| 384 |
},
|
| 385 |
"parentId": null,
|
| 386 |
+
"width": 336,
|
| 387 |
+
"height": 349
|
| 388 |
},
|
| 389 |
{
|
| 390 |
"id": "RAG graph 1",
|
|
|
|
| 419 |
"type": {
|
| 420 |
"type": "None"
|
| 421 |
},
|
| 422 |
+
"position": "top"
|
| 423 |
}
|
| 424 |
},
|
| 425 |
"type": "basic",
|
|
|
|
| 427 |
}
|
| 428 |
},
|
| 429 |
"position": {
|
| 430 |
+
"x": -817.8208895639339,
|
| 431 |
+
"y": 1014.836542916127
|
| 432 |
},
|
| 433 |
"parentId": null
|
| 434 |
},
|
|
|
|
| 468 |
"type": {
|
| 469 |
"type": "None"
|
| 470 |
},
|
| 471 |
+
"position": "top"
|
| 472 |
}
|
| 473 |
},
|
| 474 |
"type": "basic",
|
|
|
|
| 477 |
"beingResized": false
|
| 478 |
},
|
| 479 |
"position": {
|
| 480 |
+
"x": -1053.794625339574,
|
| 481 |
+
"y": 1347.7711940497127
|
| 482 |
},
|
| 483 |
"parentId": null,
|
| 484 |
"width": 275,
|
|
|
|
| 520 |
"type": {
|
| 521 |
"type": "None"
|
| 522 |
},
|
| 523 |
+
"position": "top"
|
| 524 |
}
|
| 525 |
},
|
| 526 |
"type": "basic",
|
|
|
|
| 528 |
}
|
| 529 |
},
|
| 530 |
"position": {
|
| 531 |
+
"x": -749.98604638686,
|
| 532 |
+
"y": 1293.5978526690794
|
| 533 |
},
|
| 534 |
"parentId": null
|
| 535 |
},
|
|
|
|
| 561 |
"type": {
|
| 562 |
"type": "None"
|
| 563 |
},
|
| 564 |
+
"position": "top"
|
| 565 |
}
|
| 566 |
},
|
| 567 |
"type": "basic",
|
|
|
|
| 569 |
}
|
| 570 |
},
|
| 571 |
"position": {
|
| 572 |
+
"x": -714.2838040349482,
|
| 573 |
+
"y": 1469.7242636905507
|
| 574 |
},
|
| 575 |
"parentId": null
|
| 576 |
},
|
|
|
|
| 610 |
"type": {
|
| 611 |
"type": "None"
|
| 612 |
},
|
| 613 |
+
"position": "top"
|
| 614 |
}
|
| 615 |
},
|
| 616 |
"type": "basic",
|
|
|
|
| 618 |
}
|
| 619 |
},
|
| 620 |
"position": {
|
| 621 |
+
"x": 0.08889822620079713,
|
| 622 |
+
"y": 1044.7639853229612
|
| 623 |
},
|
| 624 |
"parentId": null
|
| 625 |
},
|
|
|
|
| 640 |
"type": {
|
| 641 |
"type": "<class 'inspect._empty'>"
|
| 642 |
},
|
| 643 |
+
"position": "bottom"
|
| 644 |
}
|
| 645 |
},
|
| 646 |
"outputs": {
|
|
|
|
| 649 |
"type": {
|
| 650 |
"type": "None"
|
| 651 |
},
|
| 652 |
+
"position": "top"
|
| 653 |
}
|
| 654 |
},
|
| 655 |
"type": "basic",
|
|
|
|
| 760 |
"type": {
|
| 761 |
"type": "None"
|
| 762 |
},
|
| 763 |
+
"position": "top"
|
| 764 |
}
|
| 765 |
},
|
| 766 |
"type": "basic",
|
|
|
|
| 768 |
}
|
| 769 |
},
|
| 770 |
"position": {
|
| 771 |
+
"x": 233.69759202223884,
|
| 772 |
+
"y": 1041.6145468043276
|
| 773 |
},
|
| 774 |
"parentId": null
|
| 775 |
},
|
|
|
|
| 825 |
"type": {
|
| 826 |
"type": "None"
|
| 827 |
},
|
| 828 |
+
"position": "top"
|
| 829 |
}
|
| 830 |
},
|
| 831 |
"type": "basic",
|
|
|
|
| 833 |
}
|
| 834 |
},
|
| 835 |
"position": {
|
| 836 |
+
"x": 513.2761671440603,
|
| 837 |
+
"y": 1034.8547191984255
|
| 838 |
},
|
| 839 |
"parentId": null
|
| 840 |
}
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@ fastapi
|
|
| 2 |
matplotlib
|
| 3 |
networkx
|
| 4 |
numpy
|
|
|
|
| 5 |
pandas
|
| 6 |
scipy
|
| 7 |
uvicorn[standard]
|
|
|
|
| 2 |
matplotlib
|
| 3 |
networkx
|
| 4 |
numpy
|
| 5 |
+
orjson
|
| 6 |
pandas
|
| 7 |
scipy
|
| 8 |
uvicorn[standard]
|
server/executors/one_by_one.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
from .. import ops
|
| 2 |
from .. import workspace
|
| 3 |
-
import
|
| 4 |
-
import json
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
import traceback
|
| 7 |
import inspect
|
| 8 |
import typing
|
|
@@ -63,6 +63,15 @@ def get_stages(ws, catalog):
|
|
| 63 |
stages.append(set(nodes))
|
| 64 |
return stages
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
EXECUTOR_OUTPUT_CACHE = {}
|
| 67 |
|
| 68 |
def execute(ws, catalog, cache=None):
|
|
@@ -101,10 +110,10 @@ def execute(ws, catalog, cache=None):
|
|
| 101 |
inputs = [
|
| 102 |
batch_inputs[(n, i.name)] if i.position in 'top or bottom' else task
|
| 103 |
for i in op.inputs.values()]
|
| 104 |
-
if cache:
|
| 105 |
-
key =
|
| 106 |
if key not in cache:
|
| 107 |
-
cache[key] = op
|
| 108 |
result = cache[key]
|
| 109 |
else:
|
| 110 |
result = op(*inputs, **params)
|
|
|
|
| 1 |
from .. import ops
|
| 2 |
from .. import workspace
|
| 3 |
+
import orjson
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
import pydantic
|
| 6 |
import traceback
|
| 7 |
import inspect
|
| 8 |
import typing
|
|
|
|
| 63 |
stages.append(set(nodes))
|
| 64 |
return stages
|
| 65 |
|
| 66 |
+
|
| 67 |
+
def _default_serializer(obj):
|
| 68 |
+
if isinstance(obj, pydantic.BaseModel):
|
| 69 |
+
return obj.dict()
|
| 70 |
+
return {"__nonserializable__": id(obj)}
|
| 71 |
+
|
| 72 |
+
def make_cache_key(obj):
|
| 73 |
+
return orjson.dumps(obj, default=_default_serializer)
|
| 74 |
+
|
| 75 |
EXECUTOR_OUTPUT_CACHE = {}
|
| 76 |
|
| 77 |
def execute(ws, catalog, cache=None):
|
|
|
|
| 110 |
inputs = [
|
| 111 |
batch_inputs[(n, i.name)] if i.position in 'top or bottom' else task
|
| 112 |
for i in op.inputs.values()]
|
| 113 |
+
if cache is not None:
|
| 114 |
+
key = make_cache_key((inputs, params))
|
| 115 |
if key not in cache:
|
| 116 |
+
cache[key] = op(*inputs, **params)
|
| 117 |
result = cache[key]
|
| 118 |
else:
|
| 119 |
result = op(*inputs, **params)
|
server/lynxscribe_ops.py
CHANGED
|
@@ -14,22 +14,27 @@ from lynxscribe.components.chat_api import ChatAPI, ChatAPIRequest, ChatAPIRespo
|
|
| 14 |
|
| 15 |
from . import ops
|
| 16 |
import asyncio
|
|
|
|
| 17 |
from .executors import one_by_one
|
| 18 |
|
| 19 |
ENV = 'LynxScribe'
|
| 20 |
one_by_one.register(ENV)
|
| 21 |
op = ops.op_registration(ENV)
|
|
|
|
| 22 |
|
|
|
|
| 23 |
@op("Vector store")
|
| 24 |
def vector_store(*, name='chromadb', collection_name='lynx'):
|
| 25 |
vector_store = get_vector_store(name=name, collection_name=collection_name)
|
| 26 |
return {'vector_store': vector_store}
|
| 27 |
|
|
|
|
| 28 |
@op("LLM")
|
| 29 |
def llm(*, name='openai'):
|
| 30 |
llm = get_llm_engine(name=name)
|
| 31 |
return {'llm': llm}
|
| 32 |
|
|
|
|
| 33 |
@ops.input_position(llm="bottom")
|
| 34 |
@op("Text embedder")
|
| 35 |
def text_embedder(llm, *, model='text-embedding-ada-002'):
|
|
@@ -37,6 +42,7 @@ def text_embedder(llm, *, model='text-embedding-ada-002'):
|
|
| 37 |
text_embedder = TextEmbedder(llm=llm, model=model)
|
| 38 |
return {'text_embedder': text_embedder}
|
| 39 |
|
|
|
|
| 40 |
@ops.input_position(vector_store="bottom", text_embedder="bottom")
|
| 41 |
@op("RAG graph")
|
| 42 |
def rag_graph(vector_store, text_embedder):
|
|
@@ -47,6 +53,7 @@ def rag_graph(vector_store, text_embedder):
|
|
| 47 |
)
|
| 48 |
return {'rag_graph': rag_graph}
|
| 49 |
|
|
|
|
| 50 |
@op("Scenario selector")
|
| 51 |
def scenario_selector(*, scenario_file: str, node_types='intent_cluster'):
|
| 52 |
scenarios = load_config(scenario_file)
|
|
@@ -59,28 +66,31 @@ def scenario_selector(*, scenario_file: str, node_types='intent_cluster'):
|
|
| 59 |
|
| 60 |
DEFAULT_NEGATIVE_ANSWER = "I'm sorry, but the data I've been trained on does not contain any information related to your question."
|
| 61 |
|
|
|
|
| 62 |
@ops.input_position(rag_graph="bottom", scenario_selector="bottom", llm="bottom")
|
| 63 |
@op("RAG chatbot")
|
| 64 |
def rag_chatbot(
|
| 65 |
rag_graph, scenario_selector, llm, *,
|
| 66 |
negative_answer=DEFAULT_NEGATIVE_ANSWER,
|
| 67 |
-
|
| 68 |
-
min_summary=2, max_summary=3,
|
| 69 |
strict_limits=True, max_results=5):
|
| 70 |
rag_graph = rag_graph[0]['rag_graph']
|
| 71 |
scenario_selector = scenario_selector[0]['scenario_selector']
|
| 72 |
llm = llm[0]['llm']
|
|
|
|
| 73 |
rag_chatbot = RAGChatbot(
|
| 74 |
rag_graph=rag_graph,
|
| 75 |
scenario_selector=scenario_selector,
|
| 76 |
llm=llm,
|
| 77 |
negative_answer=negative_answer,
|
| 78 |
-
limits_by_type=
|
| 79 |
strict_limits=strict_limits,
|
| 80 |
max_results=max_results,
|
| 81 |
)
|
| 82 |
return {'chatbot': rag_chatbot}
|
| 83 |
|
|
|
|
|
|
|
| 84 |
@op("Chat processor")
|
| 85 |
def chat_processor(processor, *, _ctx: one_by_one.Context):
|
| 86 |
cfg = _ctx.last_result or {'question_processors': [], 'answer_processors': [], 'masks': []}
|
|
@@ -98,10 +108,12 @@ def chat_processor(processor, *, _ctx: one_by_one.Context):
|
|
| 98 |
chat_processor = ChatProcessor(question_processors=question_processors, answer_processors=answer_processors)
|
| 99 |
return {'chat_processor': chat_processor, **cfg}
|
| 100 |
|
|
|
|
| 101 |
@op("Truncate history")
|
| 102 |
def truncate_history(*, max_tokens=10000, language='English'):
|
| 103 |
return {'question_processor': TruncateHistory(max_tokens=max_tokens, language=language.lower())}
|
| 104 |
|
|
|
|
| 105 |
@op("Mask")
|
| 106 |
def mask(*, name='', regex='', exceptions='', mask_pattern=''):
|
| 107 |
exceptions = [e.strip() for e in exceptions.split(',') if e.strip()]
|
|
@@ -119,11 +131,13 @@ def test_chat_api(message, chat_api):
|
|
| 119 |
def input_chat(*, chat: str):
|
| 120 |
return {'text': chat}
|
| 121 |
|
| 122 |
-
@
|
|
|
|
| 123 |
@op("Chat API")
|
| 124 |
def chat_api(chatbot, chat_processor, knowledge_base, *, model='gpt-4o-mini'):
|
| 125 |
chatbot = chatbot[0]['chatbot']
|
| 126 |
chat_processor = chat_processor[0]['chat_processor']
|
|
|
|
| 127 |
c = ChatAPI(
|
| 128 |
chatbot=chatbot,
|
| 129 |
chat_processor=chat_processor,
|
|
@@ -134,6 +148,7 @@ def chat_api(chatbot, chat_processor, knowledge_base, *, model='gpt-4o-mini'):
|
|
| 134 |
c.chatbot.scenario_selector.check_compatibility(c.chatbot.rag_graph)
|
| 135 |
return {'chat_api': c}
|
| 136 |
|
|
|
|
| 137 |
@op("Knowledge base")
|
| 138 |
def knowledge_base(*, nodes_path='nodes.pickle', edges_path='edges.pickle', template_cluster_path='tempclusters.pickle'):
|
| 139 |
return {'nodes_path': nodes_path, 'edges_path': edges_path, 'template_cluster_path': template_cluster_path}
|
|
|
|
| 14 |
|
| 15 |
from . import ops
|
| 16 |
import asyncio
|
| 17 |
+
import json
|
| 18 |
from .executors import one_by_one
|
| 19 |
|
| 20 |
ENV = 'LynxScribe'
|
| 21 |
one_by_one.register(ENV)
|
| 22 |
op = ops.op_registration(ENV)
|
| 23 |
+
output_on_top = ops.output_position(output="top")
|
| 24 |
|
| 25 |
+
@output_on_top
|
| 26 |
@op("Vector store")
|
| 27 |
def vector_store(*, name='chromadb', collection_name='lynx'):
|
| 28 |
vector_store = get_vector_store(name=name, collection_name=collection_name)
|
| 29 |
return {'vector_store': vector_store}
|
| 30 |
|
| 31 |
+
@output_on_top
|
| 32 |
@op("LLM")
|
| 33 |
def llm(*, name='openai'):
|
| 34 |
llm = get_llm_engine(name=name)
|
| 35 |
return {'llm': llm}
|
| 36 |
|
| 37 |
+
@output_on_top
|
| 38 |
@ops.input_position(llm="bottom")
|
| 39 |
@op("Text embedder")
|
| 40 |
def text_embedder(llm, *, model='text-embedding-ada-002'):
|
|
|
|
| 42 |
text_embedder = TextEmbedder(llm=llm, model=model)
|
| 43 |
return {'text_embedder': text_embedder}
|
| 44 |
|
| 45 |
+
@output_on_top
|
| 46 |
@ops.input_position(vector_store="bottom", text_embedder="bottom")
|
| 47 |
@op("RAG graph")
|
| 48 |
def rag_graph(vector_store, text_embedder):
|
|
|
|
| 53 |
)
|
| 54 |
return {'rag_graph': rag_graph}
|
| 55 |
|
| 56 |
+
@output_on_top
|
| 57 |
@op("Scenario selector")
|
| 58 |
def scenario_selector(*, scenario_file: str, node_types='intent_cluster'):
|
| 59 |
scenarios = load_config(scenario_file)
|
|
|
|
| 66 |
|
| 67 |
DEFAULT_NEGATIVE_ANSWER = "I'm sorry, but the data I've been trained on does not contain any information related to your question."
|
| 68 |
|
| 69 |
+
@output_on_top
|
| 70 |
@ops.input_position(rag_graph="bottom", scenario_selector="bottom", llm="bottom")
|
| 71 |
@op("RAG chatbot")
|
| 72 |
def rag_chatbot(
|
| 73 |
rag_graph, scenario_selector, llm, *,
|
| 74 |
negative_answer=DEFAULT_NEGATIVE_ANSWER,
|
| 75 |
+
limits_by_type='{}',
|
|
|
|
| 76 |
strict_limits=True, max_results=5):
|
| 77 |
rag_graph = rag_graph[0]['rag_graph']
|
| 78 |
scenario_selector = scenario_selector[0]['scenario_selector']
|
| 79 |
llm = llm[0]['llm']
|
| 80 |
+
limits_by_type = json.loads(limits_by_type)
|
| 81 |
rag_chatbot = RAGChatbot(
|
| 82 |
rag_graph=rag_graph,
|
| 83 |
scenario_selector=scenario_selector,
|
| 84 |
llm=llm,
|
| 85 |
negative_answer=negative_answer,
|
| 86 |
+
limits_by_type=limits_by_type,
|
| 87 |
strict_limits=strict_limits,
|
| 88 |
max_results=max_results,
|
| 89 |
)
|
| 90 |
return {'chatbot': rag_chatbot}
|
| 91 |
|
| 92 |
+
@output_on_top
|
| 93 |
+
@ops.input_position(processor="bottom")
|
| 94 |
@op("Chat processor")
|
| 95 |
def chat_processor(processor, *, _ctx: one_by_one.Context):
|
| 96 |
cfg = _ctx.last_result or {'question_processors': [], 'answer_processors': [], 'masks': []}
|
|
|
|
| 108 |
chat_processor = ChatProcessor(question_processors=question_processors, answer_processors=answer_processors)
|
| 109 |
return {'chat_processor': chat_processor, **cfg}
|
| 110 |
|
| 111 |
+
@output_on_top
|
| 112 |
@op("Truncate history")
|
| 113 |
def truncate_history(*, max_tokens=10000, language='English'):
|
| 114 |
return {'question_processor': TruncateHistory(max_tokens=max_tokens, language=language.lower())}
|
| 115 |
|
| 116 |
+
@output_on_top
|
| 117 |
@op("Mask")
|
| 118 |
def mask(*, name='', regex='', exceptions='', mask_pattern=''):
|
| 119 |
exceptions = [e.strip() for e in exceptions.split(',') if e.strip()]
|
|
|
|
| 131 |
def input_chat(*, chat: str):
|
| 132 |
return {'text': chat}
|
| 133 |
|
| 134 |
+
@output_on_top
|
| 135 |
+
@ops.input_position(chatbot="bottom", chat_processor="bottom", knowledge_base="bottom")
|
| 136 |
@op("Chat API")
|
| 137 |
def chat_api(chatbot, chat_processor, knowledge_base, *, model='gpt-4o-mini'):
|
| 138 |
chatbot = chatbot[0]['chatbot']
|
| 139 |
chat_processor = chat_processor[0]['chat_processor']
|
| 140 |
+
knowledge_base = knowledge_base[0]
|
| 141 |
c = ChatAPI(
|
| 142 |
chatbot=chatbot,
|
| 143 |
chat_processor=chat_processor,
|
|
|
|
| 148 |
c.chatbot.scenario_selector.check_compatibility(c.chatbot.rag_graph)
|
| 149 |
return {'chat_api': c}
|
| 150 |
|
| 151 |
+
@output_on_top
|
| 152 |
@op("Knowledge base")
|
| 153 |
def knowledge_base(*, nodes_path='nodes.pickle', edges_path='edges.pickle', template_cluster_path='tempclusters.pickle'):
|
| 154 |
return {'nodes_path': nodes_path, 'edges_path': edges_path, 'template_cluster_path': template_cluster_path}
|