File size: 7,674 Bytes
ca01fa3
 
5826642
a07e9cb
 
b6d30cb
ca01fa3
b6d30cb
e7fa7ee
a07e9cb
ca01fa3
e7fa7ee
 
a07e9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0194e7
a07e9cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d72daa
a07e9cb
 
e7fa7ee
ca01fa3
 
 
 
e7fa7ee
9e91869
ca01fa3
 
 
e7fa7ee
a07e9cb
5882a26
0c44583
b6d30cb
5826642
 
 
 
 
b6d30cb
e7fa7ee
 
5826642
 
 
 
 
 
 
 
 
 
 
 
942065e
b6d30cb
 
 
 
 
ca01fa3
e7fa7ee
5826642
b6d30cb
 
 
 
76e9e8e
b6d30cb
5882a26
b6d30cb
5882a26
b5a8a95
 
b6d30cb
b5a8a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5882a26
b5a8a95
 
 
 
 
 
 
 
 
 
9e91869
b6d30cb
a18645a
e7fa7ee
a07e9cb
a18645a
 
 
 
d994c06
 
 
a18645a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
'''Some operations. To be split into separate files when we have more.'''
from . import ops
from collections import deque
import dataclasses
import functools
import matplotlib
import networkx as nx
import pandas as pd
import traceback
import typing

op = ops.op_registration('LynxKite')

@dataclasses.dataclass
class RelationDefinition:
  '''Defines a set of edges.'''
  df: str # The DataFrame that contains the edges.
  source_column: str # The column in the edge DataFrame that contains the source node ID.
  target_column: str # The column in the edge DataFrame that contains the target node ID.
  source_table: str # The DataFrame that contains the source nodes.
  target_table: str # The DataFrame that contains the target nodes.
  source_key: str # The column in the source table that contains the node ID.
  target_key: str # The column in the target table that contains the node ID.

@dataclasses.dataclass
class Bundle:
  '''A collection of DataFrames and other data.

  Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
  It can also carry other data, such as a trained model.
  '''
  dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
  relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
  other: dict[str, typing.Any] = None

  @classmethod
  def from_nx(cls, graph: nx.Graph):
    edges = nx.to_pandas_edgelist(graph)
    d = dict(graph.nodes(data=True))
    nodes = pd.DataFrame(d.values(), index=d.keys())
    nodes['id'] = nodes.index
    return cls(
      dfs={'edges': edges, 'nodes': nodes},
      relations=[
        RelationDefinition(
          df='edges',
          source_column='source',
          target_column='target',
          source_table='nodes',
          target_table='nodes',
          source_key='id',
          target_key='id',
        )
      ]
    )

  def to_nx(self):
    graph = nx.from_pandas_edgelist(self.dfs['edges'])
    nx.set_node_attributes(graph, self.dfs['nodes'].set_index('id').to_dict('index'))
    return graph


def nx_node_attribute_func(name):
  '''Decorator for wrapping a function that adds a NetworkX node attribute.'''
  def decorator(func):
    @functools.wraps(func)
    def wrapper(graph: nx.Graph, **kwargs):
      graph = graph.copy()
      attr = func(graph, **kwargs)
      nx.set_node_attributes(graph, attr, name)
      return graph
    return wrapper
  return decorator


def disambiguate_edges(ws):
    '''If an input plug is connected to multiple edges, keep only the last edge.'''
    seen = set()
    for edge in reversed(ws.edges):
        if (edge.target, edge.targetHandle) in seen:
            ws.edges.remove(edge)
        seen.add((edge.target, edge.targetHandle))


@ops.register_executor('LynxKite')
async def execute(ws):
    catalog = ops.CATALOGS['LynxKite']
    # Nodes are responsible for interpreting/executing their child nodes.
    nodes = [n for n in ws.nodes if not n.parentId]
    disambiguate_edges(ws)
    children = {}
    for n in ws.nodes:
        if n.parentId:
            children.setdefault(n.parentId, []).append(n)
    outputs = {}
    failed = 0
    while len(outputs) + failed < len(nodes):
        for node in nodes:
            if node.id in outputs:
                continue
            # TODO: Take the input/output handles into account.
            inputs = [edge.source for edge in ws.edges if edge.target == node.id]
            if all(input in outputs for input in inputs):
                inputs = [outputs[input] for input in inputs]
                data = node.data
                op = catalog[data.title]
                params = {**data.params}
                # Convert inputs.
                for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
                  if p.type == nx.Graph and isinstance(x, Bundle):
                    inputs[i] = x.to_nx()
                  elif p.type == Bundle and isinstance(x, nx.Graph):
                    inputs[i] = Bundle.from_nx(x)
                try:
                  output = op(*inputs, **params)
                except Exception as e:
                  traceback.print_exc()
                  data.error = str(e)
                  failed += 1
                  continue
                if len(op.inputs) == 1 and op.inputs.get('multi') == '*':
                    # It's a flexible input. Create n+1 handles.
                    data.inputs = {f'input{i}': None for i in range(len(inputs) + 1)}
                data.error = None
                outputs[node.id] = output
                if op.type == 'visualization' or op.type == 'table_view' or op.type == 'image':
                    data.display = output

@op("Import Parquet")
def import_parquet(*, filename: str):
  '''Imports a parquet file.'''
  return pd.read_parquet(filename)

@op("Create scale-free graph")
def create_scale_free_graph(*, nodes: int = 10):
  '''Creates a scale-free graph with the given number of nodes.'''
  return nx.scale_free_graph(nodes)

@op("Compute PageRank")
@nx_node_attribute_func('pagerank')
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
  return nx.pagerank(graph, alpha=damping, max_iter=iterations)

@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
  graph = graph.copy()
  graph.remove_edges_from(nx.selfloop_edges(graph))
  return graph

@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
  '''Takes a (preferably connected) subgraph.'''
  sample = set()
  to_expand = deque([0])
  while to_expand and len(sample) < nodes:
    node = to_expand.pop()
    for n in graph.neighbors(node):
      if n not in sample:
        sample.add(n)
        to_expand.append(n)
      if len(sample) == nodes:
        break
  return nx.Graph(graph.subgraph(sample))

def _map_color(value):
  cmap = matplotlib.cm.get_cmap('viridis')
  value = (value - value.min()) / (value.max() - value.min())
  rgba = cmap(value)
  return ['#{:02x}{:02x}{:02x}'.format(int(r*255), int(g*255), int(b*255)) for r, g, b in rgba[:, :3]]

@op("Visualize graph", view="visualization")
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
  nodes = graph.dfs['nodes'].copy()
  if color_nodes_by:
    nodes['color'] = _map_color(nodes[color_nodes_by])
  nodes = nodes.to_records()
  edges = graph.dfs['edges'].drop_duplicates(['source', 'target'])
  edges = edges.to_records()
  pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000/len(nodes))))
  v = {
    'animationDuration': 500,
    'animationEasingUpdate': 'quinticInOut',
    'series': [
      {
        'type': 'graph',
        'roam': True,
        'lineStyle': {
          'color': 'gray',
          'curveness': 0.3,
        },
        'emphasis': {
          'focus': 'adjacency',
          'lineStyle': {
            'width': 10,
          }
        },
        'data': [
          {
            'id': str(n.id),
            'x': float(pos[n.id][0]), 'y': float(pos[n.id][1]),
            # Adjust node size to cover the same area no matter how many nodes there are.
            'symbolSize': 50 / len(nodes) ** 0.5,
            'itemStyle': {'color': n.color} if color_nodes_by else {},
          }
          for n in nodes],
        'links': [
          {'source': str(r.source), 'target': str(r.target)}
          for r in edges],
      },
    ],
  }
  return v

@op("View tables", view="table_view")
def view_tables(bundle: Bundle):
  v = {
    'dataframes': { name: {
      'columns': [str(c) for c in df.columns],
      'data': df.values.tolist(),
    } for name, df in bundle.dfs.items() },
    'relations': bundle.relations,
    'other': bundle.other,
  }
  return v