Spaces:
Running
Running
File size: 7,674 Bytes
ca01fa3 5826642 a07e9cb b6d30cb ca01fa3 b6d30cb e7fa7ee a07e9cb ca01fa3 e7fa7ee a07e9cb a0194e7 a07e9cb 4d72daa a07e9cb e7fa7ee ca01fa3 e7fa7ee 9e91869 ca01fa3 e7fa7ee a07e9cb 5882a26 0c44583 b6d30cb 5826642 b6d30cb e7fa7ee 5826642 942065e b6d30cb ca01fa3 e7fa7ee 5826642 b6d30cb 76e9e8e b6d30cb 5882a26 b6d30cb 5882a26 b5a8a95 b6d30cb b5a8a95 5882a26 b5a8a95 9e91869 b6d30cb a18645a e7fa7ee a07e9cb a18645a d994c06 a18645a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
'''Some operations. To be split into separate files when we have more.'''
from . import ops
from collections import deque
import dataclasses
import functools
import matplotlib
import networkx as nx
import pandas as pd
import traceback
import typing
op = ops.op_registration('LynxKite')
@dataclasses.dataclass
class RelationDefinition:
'''Defines a set of edges.'''
df: str # The DataFrame that contains the edges.
source_column: str # The column in the edge DataFrame that contains the source node ID.
target_column: str # The column in the edge DataFrame that contains the target node ID.
source_table: str # The DataFrame that contains the source nodes.
target_table: str # The DataFrame that contains the target nodes.
source_key: str # The column in the source table that contains the node ID.
target_key: str # The column in the target table that contains the node ID.
@dataclasses.dataclass
class Bundle:
'''A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
It can also carry other data, such as a trained model.
'''
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = None
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes['id'] = nodes.index
return cls(
dfs={'edges': edges, 'nodes': nodes},
relations=[
RelationDefinition(
df='edges',
source_column='source',
target_column='target',
source_table='nodes',
target_table='nodes',
source_key='id',
target_key='id',
)
]
)
def to_nx(self):
graph = nx.from_pandas_edgelist(self.dfs['edges'])
nx.set_node_attributes(graph, self.dfs['nodes'].set_index('id').to_dict('index'))
return graph
def nx_node_attribute_func(name):
'''Decorator for wrapping a function that adds a NetworkX node attribute.'''
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws):
'''If an input plug is connected to multiple edges, keep only the last edge.'''
seen = set()
for edge in reversed(ws.edges):
if (edge.target, edge.targetHandle) in seen:
ws.edges.remove(edge)
seen.add((edge.target, edge.targetHandle))
@ops.register_executor('LynxKite')
async def execute(ws):
catalog = ops.CATALOGS['LynxKite']
# Nodes are responsible for interpreting/executing their child nodes.
nodes = [n for n in ws.nodes if not n.parentId]
disambiguate_edges(ws)
children = {}
for n in ws.nodes:
if n.parentId:
children.setdefault(n.parentId, []).append(n)
outputs = {}
failed = 0
while len(outputs) + failed < len(nodes):
for node in nodes:
if node.id in outputs:
continue
# TODO: Take the input/output handles into account.
inputs = [edge.source for edge in ws.edges if edge.target == node.id]
if all(input in outputs for input in inputs):
inputs = [outputs[input] for input in inputs]
data = node.data
op = catalog[data.title]
params = {**data.params}
# Convert inputs.
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
if p.type == nx.Graph and isinstance(x, Bundle):
inputs[i] = x.to_nx()
elif p.type == Bundle and isinstance(x, nx.Graph):
inputs[i] = Bundle.from_nx(x)
try:
output = op(*inputs, **params)
except Exception as e:
traceback.print_exc()
data.error = str(e)
failed += 1
continue
if len(op.inputs) == 1 and op.inputs.get('multi') == '*':
# It's a flexible input. Create n+1 handles.
data.inputs = {f'input{i}': None for i in range(len(inputs) + 1)}
data.error = None
outputs[node.id] = output
if op.type == 'visualization' or op.type == 'table_view' or op.type == 'image':
data.display = output
@op("Import Parquet")
def import_parquet(*, filename: str):
'''Imports a parquet file.'''
return pd.read_parquet(filename)
@op("Create scale-free graph")
def create_scale_free_graph(*, nodes: int = 10):
'''Creates a scale-free graph with the given number of nodes.'''
return nx.scale_free_graph(nodes)
@op("Compute PageRank")
@nx_node_attribute_func('pagerank')
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
return nx.pagerank(graph, alpha=damping, max_iter=iterations)
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
'''Takes a (preferably connected) subgraph.'''
sample = set()
to_expand = deque([0])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
cmap = matplotlib.cm.get_cmap('viridis')
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value)
return ['#{:02x}{:02x}{:02x}'.format(int(r*255), int(g*255), int(b*255)) for r, g, b in rgba[:, :3]]
@op("Visualize graph", view="visualization")
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
nodes = graph.dfs['nodes'].copy()
if color_nodes_by:
nodes['color'] = _map_color(nodes[color_nodes_by])
nodes = nodes.to_records()
edges = graph.dfs['edges'].drop_duplicates(['source', 'target'])
edges = edges.to_records()
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000/len(nodes))))
v = {
'animationDuration': 500,
'animationEasingUpdate': 'quinticInOut',
'series': [
{
'type': 'graph',
'roam': True,
'lineStyle': {
'color': 'gray',
'curveness': 0.3,
},
'emphasis': {
'focus': 'adjacency',
'lineStyle': {
'width': 10,
}
},
'data': [
{
'id': str(n.id),
'x': float(pos[n.id][0]), 'y': float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
'symbolSize': 50 / len(nodes) ** 0.5,
'itemStyle': {'color': n.color} if color_nodes_by else {},
}
for n in nodes],
'links': [
{'source': str(r.source), 'target': str(r.target)}
for r in edges],
},
],
}
return v
@op("View tables", view="table_view")
def view_tables(bundle: Bundle):
v = {
'dataframes': { name: {
'columns': [str(c) for c in df.columns],
'data': df.values.tolist(),
} for name, df in bundle.dfs.items() },
'relations': bundle.relations,
'other': bundle.other,
}
return v
|