Spaces:
Running
Running
Passive nodes. LynxScribe example.
Browse files- server/basic_ops.py +4 -3
- server/lynxscribe_ops.py +14 -0
- server/main.py +11 -1
- server/networkx_ops.py +2 -2
- server/ops.py +47 -18
- server/pytorch_model_ops.py +20 -4
- web/src/LynxKiteFlow.svelte +2 -0
- web/src/NodeWithTableView.svelte +6 -0
server/basic_ops.py
CHANGED
@@ -52,12 +52,13 @@ def visualize_graph(graph: ops.Bundle, *, color_nodes_by: 'node_attribute' = Non
|
|
52 |
return v
|
53 |
|
54 |
@ops.op("View tables", view="table_view")
|
55 |
-
def view_tables(
|
56 |
v = {
|
57 |
'dataframes': { name: {
|
58 |
'columns': [str(c) for c in df.columns],
|
59 |
'data': df.values.tolist(),
|
60 |
-
} for name, df in
|
61 |
-
'relations':
|
|
|
62 |
}
|
63 |
return v
|
|
|
52 |
return v
|
53 |
|
54 |
@ops.op("View tables", view="table_view")
|
55 |
+
def view_tables(bundle: ops.Bundle):
|
56 |
v = {
|
57 |
'dataframes': { name: {
|
58 |
'columns': [str(c) for c in df.columns],
|
59 |
'data': df.values.tolist(),
|
60 |
+
} for name, df in bundle.dfs.items() },
|
61 |
+
'relations': bundle.relations,
|
62 |
+
'other': bundle.other,
|
63 |
}
|
64 |
return v
|
server/lynxscribe_ops.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''An example of passive ops. Just using LynxKite to describe the configuration of a complex system.'''
|
2 |
+
from .ops import register_passive_op, Parameter as P
|
3 |
+
|
4 |
+
register_passive_op('Scrape documents', inputs={}, params=[P('url', '')])
|
5 |
+
register_passive_op('Extract graph')
|
6 |
+
register_passive_op('Compute embeddings')
|
7 |
+
register_passive_op('Vector DB', params=[P('backend', 'FAISS')])
|
8 |
+
register_passive_op('Chat UI', outputs={})
|
9 |
+
register_passive_op('Chat backend', inputs={})
|
10 |
+
register_passive_op('WhatsApp', inputs={})
|
11 |
+
register_passive_op('PII removal')
|
12 |
+
register_passive_op('Intent classification')
|
13 |
+
register_passive_op('System prompt', inputs={}, params=[P('prompt', 'You are a heplful chatbot.')])
|
14 |
+
register_passive_op('LLM', params=[P('model', 'gpt4')])
|
server/main.py
CHANGED
@@ -53,6 +53,10 @@ def get_catalog():
|
|
53 |
def execute(ws):
|
54 |
# Nodes are responsible for interpreting/executing their child nodes.
|
55 |
nodes = [n for n in ws.nodes if not n.parentNode]
|
|
|
|
|
|
|
|
|
56 |
outputs = {}
|
57 |
failed = 0
|
58 |
while len(outputs) + failed < len(nodes):
|
@@ -64,8 +68,14 @@ def execute(ws):
|
|
64 |
inputs = [outputs[input] for input in inputs]
|
65 |
data = node.data
|
66 |
op = ops.ALL_OPS[data.title]
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
try:
|
68 |
-
output = op(*inputs, **
|
69 |
except Exception as e:
|
70 |
traceback.print_exc()
|
71 |
data.error = str(e)
|
|
|
53 |
def execute(ws):
|
54 |
# Nodes are responsible for interpreting/executing their child nodes.
|
55 |
nodes = [n for n in ws.nodes if not n.parentNode]
|
56 |
+
children = {}
|
57 |
+
for n in ws.nodes:
|
58 |
+
if n.parentNode:
|
59 |
+
children.setdefault(n.parentNode, []).append(n)
|
60 |
outputs = {}
|
61 |
failed = 0
|
62 |
while len(outputs) + failed < len(nodes):
|
|
|
68 |
inputs = [outputs[input] for input in inputs]
|
69 |
data = node.data
|
70 |
op = ops.ALL_OPS[data.title]
|
71 |
+
params = {**data.params}
|
72 |
+
if op.sub_nodes:
|
73 |
+
sub_nodes = children.get(node.id, [])
|
74 |
+
sub_node_ids = [node.id for node in sub_nodes]
|
75 |
+
sub_edges = [edge for edge in ws.edges if edge.source in sub_node_ids]
|
76 |
+
params['sub_flow'] = {'nodes': sub_nodes, 'edges': sub_edges}
|
77 |
try:
|
78 |
+
output = op(*inputs, **params)
|
79 |
except Exception as e:
|
80 |
traceback.print_exc()
|
81 |
data.error = str(e)
|
server/networkx_ops.py
CHANGED
@@ -22,9 +22,9 @@ def wrapped(func):
|
|
22 |
|
23 |
|
24 |
for (name, func) in nx.__dict__.items():
|
25 |
-
if
|
26 |
sig = inspect.signature(func)
|
27 |
-
inputs = {
|
28 |
params = {
|
29 |
name:
|
30 |
str(param.default)
|
|
|
22 |
|
23 |
|
24 |
for (name, func) in nx.__dict__.items():
|
25 |
+
if hasattr(func, 'graphs'):
|
26 |
sig = inspect.signature(func)
|
27 |
+
inputs = {k: nx.Graph for k in func.graphs}
|
28 |
params = {
|
29 |
name:
|
30 |
str(param.default)
|
server/ops.py
CHANGED
@@ -4,14 +4,33 @@ import functools
|
|
4 |
import inspect
|
5 |
import networkx as nx
|
6 |
import pandas as pd
|
|
|
7 |
|
8 |
ALL_OPS = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
@dataclasses.dataclass
|
11 |
class Op:
|
12 |
func: callable
|
13 |
name: str
|
14 |
-
params: dict
|
15 |
inputs: dict # name -> type
|
16 |
outputs: dict # name -> type
|
17 |
type: str # The UI to use for this operation.
|
@@ -19,22 +38,17 @@ class Op:
|
|
19 |
|
20 |
def __call__(self, *inputs, **params):
|
21 |
# Convert parameters.
|
22 |
-
|
23 |
-
for p in params:
|
24 |
if p in self.params:
|
25 |
-
|
26 |
-
if t is inspect._empty:
|
27 |
-
t = type(self.params[p])
|
28 |
-
if t == int:
|
29 |
params[p] = int(params[p])
|
30 |
-
elif
|
31 |
params[p] = float(params[p])
|
32 |
# Convert inputs.
|
33 |
inputs = list(inputs)
|
34 |
-
for i, (x,
|
35 |
-
t = p.annotation
|
36 |
if t == nx.Graph and isinstance(x, Bundle):
|
37 |
-
inputs[i] =
|
38 |
elif t == Bundle and isinstance(x, nx.Graph):
|
39 |
inputs[i] = Bundle.from_nx(x)
|
40 |
res = self.func(*inputs, **params)
|
@@ -43,7 +57,7 @@ class Op:
|
|
43 |
def to_json(self):
|
44 |
return {
|
45 |
'type': self.type,
|
46 |
-
'data': { 'title': self.name, 'params': self.params },
|
47 |
'targetPosition': 'left' if self.inputs else None,
|
48 |
'sourcePosition': 'right' if self.outputs else None,
|
49 |
'sub_nodes': [sub.to_json() for sub in self.sub_nodes.values()] if self.sub_nodes else None,
|
@@ -68,8 +82,8 @@ class Bundle:
|
|
68 |
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
|
69 |
It can also carry other data, such as a trained model.
|
70 |
'''
|
71 |
-
dfs: dict
|
72 |
-
relations: list[RelationDefinition]
|
73 |
other: dict = None
|
74 |
|
75 |
@classmethod
|
@@ -121,10 +135,15 @@ def op(name, *, view='basic', sub_nodes=None):
|
|
121 |
name: param.annotation
|
122 |
for name, param in sig.parameters.items()
|
123 |
if param.kind != param.KEYWORD_ONLY}
|
124 |
-
params = {
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
128 |
outputs = {'output': 'yes'} if view == 'basic' else {} # Maybe more fancy later.
|
129 |
op = Op(func, name, params=params, inputs=inputs, outputs=outputs, type=view)
|
130 |
if sub_nodes is not None:
|
@@ -133,3 +152,13 @@ def op(name, *, view='basic', sub_nodes=None):
|
|
133 |
ALL_OPS[name] = op
|
134 |
return func
|
135 |
return decorator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import inspect
|
5 |
import networkx as nx
|
6 |
import pandas as pd
|
7 |
+
import typing
|
8 |
|
9 |
ALL_OPS = {}
|
10 |
+
PARAM_TYPE = type[typing.Any]
|
11 |
+
|
12 |
+
@dataclasses.dataclass
|
13 |
+
class Parameter:
|
14 |
+
'''Defines a parameter for an operation.'''
|
15 |
+
name: str
|
16 |
+
default: any
|
17 |
+
type: PARAM_TYPE = None
|
18 |
+
|
19 |
+
def __post_init__(self):
|
20 |
+
if self.type is None:
|
21 |
+
self.type = type(self.default)
|
22 |
+
def to_json(self):
|
23 |
+
return {
|
24 |
+
'name': self.name,
|
25 |
+
'default': self.default,
|
26 |
+
'type': str(self.type),
|
27 |
+
}
|
28 |
|
29 |
@dataclasses.dataclass
|
30 |
class Op:
|
31 |
func: callable
|
32 |
name: str
|
33 |
+
params: dict[str, Parameter]
|
34 |
inputs: dict # name -> type
|
35 |
outputs: dict # name -> type
|
36 |
type: str # The UI to use for this operation.
|
|
|
38 |
|
39 |
def __call__(self, *inputs, **params):
|
40 |
# Convert parameters.
|
41 |
+
for p in params.values():
|
|
|
42 |
if p in self.params:
|
43 |
+
if p.type == int:
|
|
|
|
|
|
|
44 |
params[p] = int(params[p])
|
45 |
+
elif p.type == float:
|
46 |
params[p] = float(params[p])
|
47 |
# Convert inputs.
|
48 |
inputs = list(inputs)
|
49 |
+
for i, (x, t) in enumerate(zip(inputs, self.inputs.values())):
|
|
|
50 |
if t == nx.Graph and isinstance(x, Bundle):
|
51 |
+
inputs[i] = x.to_nx()
|
52 |
elif t == Bundle and isinstance(x, nx.Graph):
|
53 |
inputs[i] = Bundle.from_nx(x)
|
54 |
res = self.func(*inputs, **params)
|
|
|
57 |
def to_json(self):
|
58 |
return {
|
59 |
'type': self.type,
|
60 |
+
'data': { 'title': self.name, 'params': [p.to_json() for p in self.params.values()] },
|
61 |
'targetPosition': 'left' if self.inputs else None,
|
62 |
'sourcePosition': 'right' if self.outputs else None,
|
63 |
'sub_nodes': [sub.to_json() for sub in self.sub_nodes.values()] if self.sub_nodes else None,
|
|
|
82 |
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
|
83 |
It can also carry other data, such as a trained model.
|
84 |
'''
|
85 |
+
dfs: dict = dataclasses.field(default_factory=dict) # name -> DataFrame
|
86 |
+
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
87 |
other: dict = None
|
88 |
|
89 |
@classmethod
|
|
|
135 |
name: param.annotation
|
136 |
for name, param in sig.parameters.items()
|
137 |
if param.kind != param.KEYWORD_ONLY}
|
138 |
+
params = {}
|
139 |
+
for n, param in sig.parameters.items():
|
140 |
+
if param.kind == param.KEYWORD_ONLY:
|
141 |
+
p = Parameter(n, param.default, param.annotation)
|
142 |
+
if p.default is inspect._empty:
|
143 |
+
p.default = None
|
144 |
+
if p.type is inspect._empty:
|
145 |
+
p.type = type(p.default)
|
146 |
+
params[n] = p
|
147 |
outputs = {'output': 'yes'} if view == 'basic' else {} # Maybe more fancy later.
|
148 |
op = Op(func, name, params=params, inputs=inputs, outputs=outputs, type=view)
|
149 |
if sub_nodes is not None:
|
|
|
152 |
ALL_OPS[name] = op
|
153 |
return func
|
154 |
return decorator
|
155 |
+
|
156 |
+
def no_op(*args, **kwargs):
|
157 |
+
if args:
|
158 |
+
return args[0]
|
159 |
+
return Bundle()
|
160 |
+
|
161 |
+
def register_passive_op(name, inputs={'input': Bundle}, outputs={'output': Bundle}, params=[]):
|
162 |
+
'''A passive operation has no associated code.'''
|
163 |
+
op = Op(no_op, name, params={p.name: p for p in params}, inputs=inputs, outputs=outputs, type='basic')
|
164 |
+
ALL_OPS[name] = op
|
server/pytorch_model_ops.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
'''Boxes for defining and using PyTorch models.'''
|
|
|
2 |
import inspect
|
3 |
from . import ops
|
4 |
|
@@ -6,9 +7,13 @@ LAYERS = {}
|
|
6 |
|
7 |
@ops.op("Define PyTorch model", sub_nodes=LAYERS)
|
8 |
def define_pytorch_model(*, sub_flow):
|
9 |
-
# import torch # Lazy import because it's slow.
|
10 |
print('sub_flow:', sub_flow)
|
11 |
-
return '
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def register_layer(name):
|
14 |
def decorator(func):
|
@@ -38,11 +43,22 @@ def dropout(*, p=0.5):
|
|
38 |
def linear(*, output_dim: int):
|
39 |
return f'Linear {output_dim}'
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@register_layer('Graph Convolution')
|
42 |
-
def graph_convolution():
|
43 |
return 'GraphConv'
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
@register_layer('Nonlinearity')
|
46 |
-
def nonlinearity():
|
47 |
return 'ReLU'
|
48 |
|
|
|
1 |
'''Boxes for defining and using PyTorch models.'''
|
2 |
+
from enum import Enum
|
3 |
import inspect
|
4 |
from . import ops
|
5 |
|
|
|
7 |
|
8 |
@ops.op("Define PyTorch model", sub_nodes=LAYERS)
|
9 |
def define_pytorch_model(*, sub_flow):
|
|
|
10 |
print('sub_flow:', sub_flow)
|
11 |
+
return ops.Bundle(other={'model': str(sub_flow)})
|
12 |
+
|
13 |
+
@ops.op("Train PyTorch model")
|
14 |
+
def train_pytorch_model(model, graph):
|
15 |
+
# import torch # Lazy import because it's slow.
|
16 |
+
return 'hello ' + str(model)
|
17 |
|
18 |
def register_layer(name):
|
19 |
def decorator(func):
|
|
|
43 |
def linear(*, output_dim: int):
|
44 |
return f'Linear {output_dim}'
|
45 |
|
46 |
+
class GraphConv(Enum):
|
47 |
+
GCNConv = 'GCNConv'
|
48 |
+
GATConv = 'GATConv'
|
49 |
+
GATv2Conv = 'GATv2Conv'
|
50 |
+
SAGEConv = 'SAGEConv'
|
51 |
+
|
52 |
@register_layer('Graph Convolution')
|
53 |
+
def graph_convolution(*, type: GraphConv):
|
54 |
return 'GraphConv'
|
55 |
|
56 |
+
class Nonlinearity(Enum):
|
57 |
+
Mish = 'Mish'
|
58 |
+
ReLU = 'ReLU'
|
59 |
+
Tanh = 'Tanh'
|
60 |
+
|
61 |
@register_layer('Nonlinearity')
|
62 |
+
def nonlinearity(*, type: Nonlinearity):
|
63 |
return 'ReLU'
|
64 |
|
web/src/LynxKiteFlow.svelte
CHANGED
@@ -65,6 +65,8 @@
|
|
65 |
nodes.update((n) => {
|
66 |
node.position = screenToFlowPosition({x: nodeSearchSettings.pos.x, y: nodeSearchSettings.pos.y});
|
67 |
const title = node.data.title;
|
|
|
|
|
68 |
let i = 1;
|
69 |
node.id = `${title} ${i}`;
|
70 |
while (n.find((x) => x.id === node.id)) {
|
|
|
65 |
nodes.update((n) => {
|
66 |
node.position = screenToFlowPosition({x: nodeSearchSettings.pos.x, y: nodeSearchSettings.pos.y});
|
67 |
const title = node.data.title;
|
68 |
+
node.data.params = Object.fromEntries(
|
69 |
+
node.data.params.map((p) => [p.name, p.default]));
|
70 |
let i = 1;
|
71 |
node.id = `${title} ${i}`;
|
72 |
while (n.find((x) => x.id === node.id)) {
|
web/src/NodeWithTableView.svelte
CHANGED
@@ -27,6 +27,12 @@
|
|
27 |
</table>
|
28 |
{/if}
|
29 |
{/each}
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
{/if}
|
31 |
</LynxKiteNode>
|
32 |
<style>
|
|
|
27 |
</table>
|
28 |
{/if}
|
29 |
{/each}
|
30 |
+
{#each Object.entries(data.view.others || {}) as [name, o]}
|
31 |
+
<div class="df-head" on:click={() => open[name] = !open[name]}>{name}</div>
|
32 |
+
{#if open[name]}
|
33 |
+
<pre>{o}</pre>
|
34 |
+
{/if}
|
35 |
+
{/each}
|
36 |
{/if}
|
37 |
</LynxKiteNode>
|
38 |
<style>
|