darabos commited on
Commit
d994c06
·
1 Parent(s): 23323c5

Passive nodes. LynxScribe example.

Browse files
server/basic_ops.py CHANGED
@@ -52,12 +52,13 @@ def visualize_graph(graph: ops.Bundle, *, color_nodes_by: 'node_attribute' = Non
52
  return v
53
 
54
  @ops.op("View tables", view="table_view")
55
- def view_tables(dfs: ops.Bundle):
56
  v = {
57
  'dataframes': { name: {
58
  'columns': [str(c) for c in df.columns],
59
  'data': df.values.tolist(),
60
- } for name, df in dfs.dfs.items() },
61
- 'relations': dfs.relations,
 
62
  }
63
  return v
 
52
  return v
53
 
54
  @ops.op("View tables", view="table_view")
55
+ def view_tables(bundle: ops.Bundle):
56
  v = {
57
  'dataframes': { name: {
58
  'columns': [str(c) for c in df.columns],
59
  'data': df.values.tolist(),
60
+ } for name, df in bundle.dfs.items() },
61
+ 'relations': bundle.relations,
62
+ 'other': bundle.other,
63
  }
64
  return v
server/lynxscribe_ops.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''An example of passive ops. Just using LynxKite to describe the configuration of a complex system.'''
2
+ from .ops import register_passive_op, Parameter as P
3
+
4
+ register_passive_op('Scrape documents', inputs={}, params=[P('url', '')])
5
+ register_passive_op('Extract graph')
6
+ register_passive_op('Compute embeddings')
7
+ register_passive_op('Vector DB', params=[P('backend', 'FAISS')])
8
+ register_passive_op('Chat UI', outputs={})
9
+ register_passive_op('Chat backend', inputs={})
10
+ register_passive_op('WhatsApp', inputs={})
11
+ register_passive_op('PII removal')
12
+ register_passive_op('Intent classification')
13
+ register_passive_op('System prompt', inputs={}, params=[P('prompt', 'You are a heplful chatbot.')])
14
+ register_passive_op('LLM', params=[P('model', 'gpt4')])
server/main.py CHANGED
@@ -53,6 +53,10 @@ def get_catalog():
53
  def execute(ws):
54
  # Nodes are responsible for interpreting/executing their child nodes.
55
  nodes = [n for n in ws.nodes if not n.parentNode]
 
 
 
 
56
  outputs = {}
57
  failed = 0
58
  while len(outputs) + failed < len(nodes):
@@ -64,8 +68,14 @@ def execute(ws):
64
  inputs = [outputs[input] for input in inputs]
65
  data = node.data
66
  op = ops.ALL_OPS[data.title]
 
 
 
 
 
 
67
  try:
68
- output = op(*inputs, **data.params)
69
  except Exception as e:
70
  traceback.print_exc()
71
  data.error = str(e)
 
53
  def execute(ws):
54
  # Nodes are responsible for interpreting/executing their child nodes.
55
  nodes = [n for n in ws.nodes if not n.parentNode]
56
+ children = {}
57
+ for n in ws.nodes:
58
+ if n.parentNode:
59
+ children.setdefault(n.parentNode, []).append(n)
60
  outputs = {}
61
  failed = 0
62
  while len(outputs) + failed < len(nodes):
 
68
  inputs = [outputs[input] for input in inputs]
69
  data = node.data
70
  op = ops.ALL_OPS[data.title]
71
+ params = {**data.params}
72
+ if op.sub_nodes:
73
+ sub_nodes = children.get(node.id, [])
74
+ sub_node_ids = [node.id for node in sub_nodes]
75
+ sub_edges = [edge for edge in ws.edges if edge.source in sub_node_ids]
76
+ params['sub_flow'] = {'nodes': sub_nodes, 'edges': sub_edges}
77
  try:
78
+ output = op(*inputs, **params)
79
  except Exception as e:
80
  traceback.print_exc()
81
  data.error = str(e)
server/networkx_ops.py CHANGED
@@ -22,9 +22,9 @@ def wrapped(func):
22
 
23
 
24
  for (name, func) in nx.__dict__.items():
25
- if type(func) == nx.utils.backends._dispatch:
26
  sig = inspect.signature(func)
27
- inputs = {'G': nx.Graph} if 'G' in sig.parameters else {}
28
  params = {
29
  name:
30
  str(param.default)
 
22
 
23
 
24
  for (name, func) in nx.__dict__.items():
25
+ if hasattr(func, 'graphs'):
26
  sig = inspect.signature(func)
27
+ inputs = {k: nx.Graph for k in func.graphs}
28
  params = {
29
  name:
30
  str(param.default)
server/ops.py CHANGED
@@ -4,14 +4,33 @@ import functools
4
  import inspect
5
  import networkx as nx
6
  import pandas as pd
 
7
 
8
  ALL_OPS = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  @dataclasses.dataclass
11
  class Op:
12
  func: callable
13
  name: str
14
- params: dict # name -> default
15
  inputs: dict # name -> type
16
  outputs: dict # name -> type
17
  type: str # The UI to use for this operation.
@@ -19,22 +38,17 @@ class Op:
19
 
20
  def __call__(self, *inputs, **params):
21
  # Convert parameters.
22
- sig = inspect.signature(self.func)
23
- for p in params:
24
  if p in self.params:
25
- t = sig.parameters[p].annotation
26
- if t is inspect._empty:
27
- t = type(self.params[p])
28
- if t == int:
29
  params[p] = int(params[p])
30
- elif t == float:
31
  params[p] = float(params[p])
32
  # Convert inputs.
33
  inputs = list(inputs)
34
- for i, (x, p) in enumerate(zip(inputs, sig.parameters.values())):
35
- t = p.annotation
36
  if t == nx.Graph and isinstance(x, Bundle):
37
- inputs[i] = o.to_nx()
38
  elif t == Bundle and isinstance(x, nx.Graph):
39
  inputs[i] = Bundle.from_nx(x)
40
  res = self.func(*inputs, **params)
@@ -43,7 +57,7 @@ class Op:
43
  def to_json(self):
44
  return {
45
  'type': self.type,
46
- 'data': { 'title': self.name, 'params': self.params },
47
  'targetPosition': 'left' if self.inputs else None,
48
  'sourcePosition': 'right' if self.outputs else None,
49
  'sub_nodes': [sub.to_json() for sub in self.sub_nodes.values()] if self.sub_nodes else None,
@@ -68,8 +82,8 @@ class Bundle:
68
  Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
69
  It can also carry other data, such as a trained model.
70
  '''
71
- dfs: dict
72
- relations: list[RelationDefinition]
73
  other: dict = None
74
 
75
  @classmethod
@@ -121,10 +135,15 @@ def op(name, *, view='basic', sub_nodes=None):
121
  name: param.annotation
122
  for name, param in sig.parameters.items()
123
  if param.kind != param.KEYWORD_ONLY}
124
- params = {
125
- name: param.default if param.default is not inspect._empty else None
126
- for name, param in sig.parameters.items()
127
- if param.kind == param.KEYWORD_ONLY}
 
 
 
 
 
128
  outputs = {'output': 'yes'} if view == 'basic' else {} # Maybe more fancy later.
129
  op = Op(func, name, params=params, inputs=inputs, outputs=outputs, type=view)
130
  if sub_nodes is not None:
@@ -133,3 +152,13 @@ def op(name, *, view='basic', sub_nodes=None):
133
  ALL_OPS[name] = op
134
  return func
135
  return decorator
 
 
 
 
 
 
 
 
 
 
 
4
  import inspect
5
  import networkx as nx
6
  import pandas as pd
7
+ import typing
8
 
9
  ALL_OPS = {}
10
+ PARAM_TYPE = type[typing.Any]
11
+
12
+ @dataclasses.dataclass
13
+ class Parameter:
14
+ '''Defines a parameter for an operation.'''
15
+ name: str
16
+ default: any
17
+ type: PARAM_TYPE = None
18
+
19
+ def __post_init__(self):
20
+ if self.type is None:
21
+ self.type = type(self.default)
22
+ def to_json(self):
23
+ return {
24
+ 'name': self.name,
25
+ 'default': self.default,
26
+ 'type': str(self.type),
27
+ }
28
 
29
  @dataclasses.dataclass
30
  class Op:
31
  func: callable
32
  name: str
33
+ params: dict[str, Parameter]
34
  inputs: dict # name -> type
35
  outputs: dict # name -> type
36
  type: str # The UI to use for this operation.
 
38
 
39
  def __call__(self, *inputs, **params):
40
  # Convert parameters.
41
+ for p in params.values():
 
42
  if p in self.params:
43
+ if p.type == int:
 
 
 
44
  params[p] = int(params[p])
45
+ elif p.type == float:
46
  params[p] = float(params[p])
47
  # Convert inputs.
48
  inputs = list(inputs)
49
+ for i, (x, t) in enumerate(zip(inputs, self.inputs.values())):
 
50
  if t == nx.Graph and isinstance(x, Bundle):
51
+ inputs[i] = x.to_nx()
52
  elif t == Bundle and isinstance(x, nx.Graph):
53
  inputs[i] = Bundle.from_nx(x)
54
  res = self.func(*inputs, **params)
 
57
  def to_json(self):
58
  return {
59
  'type': self.type,
60
+ 'data': { 'title': self.name, 'params': [p.to_json() for p in self.params.values()] },
61
  'targetPosition': 'left' if self.inputs else None,
62
  'sourcePosition': 'right' if self.outputs else None,
63
  'sub_nodes': [sub.to_json() for sub in self.sub_nodes.values()] if self.sub_nodes else None,
 
82
  Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
83
  It can also carry other data, such as a trained model.
84
  '''
85
+ dfs: dict = dataclasses.field(default_factory=dict) # name -> DataFrame
86
+ relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
87
  other: dict = None
88
 
89
  @classmethod
 
135
  name: param.annotation
136
  for name, param in sig.parameters.items()
137
  if param.kind != param.KEYWORD_ONLY}
138
+ params = {}
139
+ for n, param in sig.parameters.items():
140
+ if param.kind == param.KEYWORD_ONLY:
141
+ p = Parameter(n, param.default, param.annotation)
142
+ if p.default is inspect._empty:
143
+ p.default = None
144
+ if p.type is inspect._empty:
145
+ p.type = type(p.default)
146
+ params[n] = p
147
  outputs = {'output': 'yes'} if view == 'basic' else {} # Maybe more fancy later.
148
  op = Op(func, name, params=params, inputs=inputs, outputs=outputs, type=view)
149
  if sub_nodes is not None:
 
152
  ALL_OPS[name] = op
153
  return func
154
  return decorator
155
+
156
+ def no_op(*args, **kwargs):
157
+ if args:
158
+ return args[0]
159
+ return Bundle()
160
+
161
+ def register_passive_op(name, inputs={'input': Bundle}, outputs={'output': Bundle}, params=[]):
162
+ '''A passive operation has no associated code.'''
163
+ op = Op(no_op, name, params={p.name: p for p in params}, inputs=inputs, outputs=outputs, type='basic')
164
+ ALL_OPS[name] = op
server/pytorch_model_ops.py CHANGED
@@ -1,4 +1,5 @@
1
  '''Boxes for defining and using PyTorch models.'''
 
2
  import inspect
3
  from . import ops
4
 
@@ -6,9 +7,13 @@ LAYERS = {}
6
 
7
  @ops.op("Define PyTorch model", sub_nodes=LAYERS)
8
  def define_pytorch_model(*, sub_flow):
9
- # import torch # Lazy import because it's slow.
10
  print('sub_flow:', sub_flow)
11
- return 'hello ' + str(sub_flow)
 
 
 
 
 
12
 
13
  def register_layer(name):
14
  def decorator(func):
@@ -38,11 +43,22 @@ def dropout(*, p=0.5):
38
  def linear(*, output_dim: int):
39
  return f'Linear {output_dim}'
40
 
 
 
 
 
 
 
41
  @register_layer('Graph Convolution')
42
- def graph_convolution():
43
  return 'GraphConv'
44
 
 
 
 
 
 
45
  @register_layer('Nonlinearity')
46
- def nonlinearity():
47
  return 'ReLU'
48
 
 
1
  '''Boxes for defining and using PyTorch models.'''
2
+ from enum import Enum
3
  import inspect
4
  from . import ops
5
 
 
7
 
8
  @ops.op("Define PyTorch model", sub_nodes=LAYERS)
9
  def define_pytorch_model(*, sub_flow):
 
10
  print('sub_flow:', sub_flow)
11
+ return ops.Bundle(other={'model': str(sub_flow)})
12
+
13
+ @ops.op("Train PyTorch model")
14
+ def train_pytorch_model(model, graph):
15
+ # import torch # Lazy import because it's slow.
16
+ return 'hello ' + str(model)
17
 
18
  def register_layer(name):
19
  def decorator(func):
 
43
  def linear(*, output_dim: int):
44
  return f'Linear {output_dim}'
45
 
46
+ class GraphConv(Enum):
47
+ GCNConv = 'GCNConv'
48
+ GATConv = 'GATConv'
49
+ GATv2Conv = 'GATv2Conv'
50
+ SAGEConv = 'SAGEConv'
51
+
52
  @register_layer('Graph Convolution')
53
+ def graph_convolution(*, type: GraphConv):
54
  return 'GraphConv'
55
 
56
+ class Nonlinearity(Enum):
57
+ Mish = 'Mish'
58
+ ReLU = 'ReLU'
59
+ Tanh = 'Tanh'
60
+
61
  @register_layer('Nonlinearity')
62
+ def nonlinearity(*, type: Nonlinearity):
63
  return 'ReLU'
64
 
web/src/LynxKiteFlow.svelte CHANGED
@@ -65,6 +65,8 @@
65
  nodes.update((n) => {
66
  node.position = screenToFlowPosition({x: nodeSearchSettings.pos.x, y: nodeSearchSettings.pos.y});
67
  const title = node.data.title;
 
 
68
  let i = 1;
69
  node.id = `${title} ${i}`;
70
  while (n.find((x) => x.id === node.id)) {
 
65
  nodes.update((n) => {
66
  node.position = screenToFlowPosition({x: nodeSearchSettings.pos.x, y: nodeSearchSettings.pos.y});
67
  const title = node.data.title;
68
+ node.data.params = Object.fromEntries(
69
+ node.data.params.map((p) => [p.name, p.default]));
70
  let i = 1;
71
  node.id = `${title} ${i}`;
72
  while (n.find((x) => x.id === node.id)) {
web/src/NodeWithTableView.svelte CHANGED
@@ -27,6 +27,12 @@
27
  </table>
28
  {/if}
29
  {/each}
 
 
 
 
 
 
30
  {/if}
31
  </LynxKiteNode>
32
  <style>
 
27
  </table>
28
  {/if}
29
  {/each}
30
+ {#each Object.entries(data.view.others || {}) as [name, o]}
31
+ <div class="df-head" on:click={() => open[name] = !open[name]}>{name}</div>
32
+ {#if open[name]}
33
+ <pre>{o}</pre>
34
+ {/if}
35
+ {/each}
36
  {/if}
37
  </LynxKiteNode>
38
  <style>