Spaces:
Running
Running
File size: 8,507 Bytes
9fda8df fe5010e 8f44c91 98f8f03 8f44c91 47e2956 2d84389 47e2956 2d84389 145d037 a112474 98f8f03 47e2956 9fda8df 47e2956 9fda8df 47e2956 9fda8df 85b8d8f 47e2956 a112474 47e2956 9fda8df 47e2956 8f44c91 47e2956 a112474 47e2956 8f44c91 2594c74 8f44c91 47e2956 8f44c91 47e2956 9fda8df 8f44c91 2594c74 994b457 2594c74 47e2956 9fda8df 8f44c91 9fda8df 8f44c91 9fda8df 8f44c91 47e2956 8f44c91 47e2956 9fda8df 47e2956 9fda8df 47e2956 9fda8df 47e2956 9fda8df 47e2956 9fda8df 2594c74 47e2956 8f44c91 145d037 8f44c91 145d037 a112474 98f8f03 d460634 98f8f03 d460634 13aa4e6 d460634 13aa4e6 d460634 2594c74 d460634 47e2956 8f44c91 a112474 8f44c91 47e2956 d460634 a112474 47e2956 a112474 d460634 47e2956 d460634 98f8f03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import { useRef } from "react";
// @ts-ignore
import ArrowsHorizontal from "~icons/tabler/arrows-horizontal.jsx";
const BOOLEAN = "<class 'bool'>";
const MODEL_TRAINING_INPUT_MAPPING =
"<class 'lynxkite_graph_analytics.ml_ops.ModelTrainingInputMapping'>";
const MODEL_INFERENCE_INPUT_MAPPING =
"<class 'lynxkite_graph_analytics.ml_ops.ModelInferenceInputMapping'>";
const MODEL_OUTPUT_MAPPING = "<class 'lynxkite_graph_analytics.ml_ops.ModelOutputMapping'>";
function ParamName({ name }: { name: string }) {
return <span className="param-name bg-base-200">{name.replace(/_/g, " ")}</span>;
}
function Input({
value,
onChange,
inputRef,
}: {
value: string;
onChange: (value: string, options?: { delay: number }) => void;
inputRef?: React.Ref<HTMLInputElement>;
}) {
return (
<input
className="input input-bordered w-full"
ref={inputRef}
value={value ?? ""}
onChange={(evt) => onChange(evt.currentTarget.value, { delay: 2 })}
onBlur={(evt) => onChange(evt.currentTarget.value, { delay: 0 })}
onKeyDown={(evt) => evt.code === "Enter" && onChange(evt.currentTarget.value, { delay: 0 })}
/>
);
}
type Bindings = {
[key: string]: {
df: string;
column: string;
};
};
function getModelBindings(
data: any,
variant: "training input" | "inference input" | "output",
): string[] {
function bindingsOfModel(m: any): string[] {
switch (variant) {
case "training input":
return [...m.inputs, ...m.loss_inputs.filter((i: string) => !m.outputs.includes(i))];
case "inference input":
return m.inputs;
case "output":
return m.outputs;
}
}
const bindings = new Set<string>();
const inputs = data?.input_metadata?.value ?? data?.input_metadata ?? [];
for (const input of inputs) {
const other = input.other ?? {};
for (const e of Object.values(other) as any[]) {
if (e.type === "model") {
for (const b of bindingsOfModel(e.model)) {
bindings.add(b);
}
}
}
}
const list = [...bindings];
list.sort();
return list;
}
function parseJsonOrEmpty(json: string): object {
try {
const j = JSON.parse(json);
if (j !== null && typeof j === "object") {
return j;
}
} catch (e) {}
return {};
}
function ModelMapping({ value, onChange, data, variant }: any) {
const dfsRef = useRef({} as { [binding: string]: HTMLSelectElement | null });
const columnsRef = useRef(
{} as { [binding: string]: HTMLSelectElement | HTMLInputElement | null },
);
const v: any = parseJsonOrEmpty(value);
v.map ??= {};
const dfs: { [df: string]: string[] } = {};
const inputs = data?.input_metadata?.value ?? data?.input_metadata ?? [];
for (const input of inputs) {
if (!input.dataframes) continue;
const dataframes = input.dataframes as {
[df: string]: { columns: string[] };
};
for (const [df, { columns }] of Object.entries(dataframes)) {
dfs[df] = columns;
}
}
const bindings = getModelBindings(data, variant);
function getMap() {
const map: Bindings = {};
for (const binding of bindings) {
const df = dfsRef.current[binding]?.value ?? "";
const column = columnsRef.current[binding]?.value ?? "";
if (df.length || column.length) {
map[binding] = { df, column };
}
}
return map;
}
return (
<table className="model-mapping-param">
<tbody>
{bindings.length > 0 ? (
bindings.map((binding: string) => (
<tr key={binding}>
<td>{binding}</td>
<td>
<ArrowsHorizontal />
</td>
<td>
<select
className="select select-ghost"
value={v.map?.[binding]?.df}
ref={(el) => {
dfsRef.current[binding] = el;
}}
onChange={() => onChange(JSON.stringify({ map: getMap() }))}
>
<option key="" value="" />
{Object.keys(dfs).map((df: string) => (
<option key={df} value={df}>
{df}
</option>
))}
</select>
</td>
<td>
{variant === "output" ? (
<Input
inputRef={(el) => {
columnsRef.current[binding] = el;
}}
value={v.map?.[binding]?.column}
onChange={(column, options) => {
const map = getMap();
// At this point the <input> has not been updated yet. We use the value from the event.
const df = dfsRef.current[binding]?.value ?? "";
map[binding] ??= { df, column };
map[binding].column = column;
onChange(JSON.stringify({ map }), options);
}}
/>
) : (
<select
className="select select-ghost"
value={v.map?.[binding]?.column}
ref={(el) => {
columnsRef.current[binding] = el;
}}
onChange={() => onChange(JSON.stringify({ map: getMap() }))}
>
<option key="" value="" />
{dfs[v.map?.[binding]?.df]?.map((col: string) => (
<option key={col} value={col}>
{col}
</option>
))}
</select>
)}
</td>
</tr>
))
) : (
<tr>
<td>no bindings</td>
</tr>
)}
</tbody>
</table>
);
}
interface NodeParameterProps {
name: string;
value: any;
meta: any;
data: any;
onChange: (value: any, options?: { delay: number }) => void;
}
export default function NodeParameter({ name, value, meta, data, onChange }: NodeParameterProps) {
return (
// biome-ignore lint/a11y/noLabelWithoutControl: Most of the time there is a control.
<label className="param">
{meta?.type?.format === "collapsed" ? (
<>
<ParamName name={name} />
<button className="collapsed-param">⋯</button>
</>
) : meta?.type?.format === "textarea" ? (
<>
<ParamName name={name} />
<textarea
className="textarea textarea-bordered w-full"
rows={6}
value={value}
onChange={(evt) => onChange(evt.currentTarget.value, { delay: 2 })}
onBlur={(evt) => onChange(evt.currentTarget.value, { delay: 0 })}
/>
</>
) : meta?.type?.enum ? (
<>
<ParamName name={name} />
<select
className="select select-bordered w-full"
value={value || meta.type.enum[0]}
onChange={(evt) => onChange(evt.currentTarget.value)}
>
{meta.type.enum.map((option: string) => (
<option key={option} value={option}>
{option}
</option>
))}
</select>
</>
) : meta?.type?.type === BOOLEAN ? (
<div className="form-control">
<label className="label cursor-pointer">
{name.replace(/_/g, " ")}
<input
className="checkbox"
type="checkbox"
checked={value}
onChange={(evt) => onChange(evt.currentTarget.checked)}
/>
</label>
</div>
) : meta?.type?.type === MODEL_TRAINING_INPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="training input" onChange={onChange} />
</>
) : meta?.type?.type === MODEL_INFERENCE_INPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="inference input" onChange={onChange} />
</>
) : meta?.type?.type === MODEL_OUTPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="output" onChange={onChange} />
</>
) : (
<>
<ParamName name={name} />
<Input value={value} onChange={onChange} />
</>
)}
</label>
);
}
|