Spaces:
Running
Running
File size: 8,507 Bytes
99b0790 e6745ef 5f57a53 7fda361 5f57a53 5951713 38c7ee6 5951713 38c7ee6 fdfb0b2 1270bff 7fda361 5951713 99b0790 5951713 99b0790 5951713 99b0790 39ecfd3 5951713 1270bff 5951713 99b0790 5951713 5f57a53 5951713 1270bff 5951713 5f57a53 f89e59f 5f57a53 5951713 5f57a53 5951713 99b0790 5f57a53 f89e59f 485f9a0 f89e59f 5951713 99b0790 5f57a53 99b0790 5f57a53 99b0790 5f57a53 5951713 5f57a53 5951713 99b0790 5951713 99b0790 5951713 99b0790 5951713 99b0790 5951713 99b0790 f89e59f 5951713 5f57a53 fdfb0b2 5f57a53 fdfb0b2 1270bff 7fda361 7ed5764 7fda361 7ed5764 9e6788e 7ed5764 9e6788e 7ed5764 f89e59f 7ed5764 5951713 5f57a53 1270bff 5f57a53 5951713 7ed5764 1270bff 5951713 1270bff 7ed5764 5951713 7ed5764 7fda361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import { useRef } from "react";
// @ts-ignore
import ArrowsHorizontal from "~icons/tabler/arrows-horizontal.jsx";
const BOOLEAN = "<class 'bool'>";
const MODEL_TRAINING_INPUT_MAPPING =
"<class 'lynxkite_graph_analytics.ml_ops.ModelTrainingInputMapping'>";
const MODEL_INFERENCE_INPUT_MAPPING =
"<class 'lynxkite_graph_analytics.ml_ops.ModelInferenceInputMapping'>";
const MODEL_OUTPUT_MAPPING = "<class 'lynxkite_graph_analytics.ml_ops.ModelOutputMapping'>";
function ParamName({ name }: { name: string }) {
return <span className="param-name bg-base-200">{name.replace(/_/g, " ")}</span>;
}
function Input({
value,
onChange,
inputRef,
}: {
value: string;
onChange: (value: string, options?: { delay: number }) => void;
inputRef?: React.Ref<HTMLInputElement>;
}) {
return (
<input
className="input input-bordered w-full"
ref={inputRef}
value={value ?? ""}
onChange={(evt) => onChange(evt.currentTarget.value, { delay: 2 })}
onBlur={(evt) => onChange(evt.currentTarget.value, { delay: 0 })}
onKeyDown={(evt) => evt.code === "Enter" && onChange(evt.currentTarget.value, { delay: 0 })}
/>
);
}
type Bindings = {
[key: string]: {
df: string;
column: string;
};
};
function getModelBindings(
data: any,
variant: "training input" | "inference input" | "output",
): string[] {
function bindingsOfModel(m: any): string[] {
switch (variant) {
case "training input":
return [...m.inputs, ...m.loss_inputs.filter((i: string) => !m.outputs.includes(i))];
case "inference input":
return m.inputs;
case "output":
return m.outputs;
}
}
const bindings = new Set<string>();
const inputs = data?.input_metadata?.value ?? data?.input_metadata ?? [];
for (const input of inputs) {
const other = input.other ?? {};
for (const e of Object.values(other) as any[]) {
if (e.type === "model") {
for (const b of bindingsOfModel(e.model)) {
bindings.add(b);
}
}
}
}
const list = [...bindings];
list.sort();
return list;
}
function parseJsonOrEmpty(json: string): object {
try {
const j = JSON.parse(json);
if (j !== null && typeof j === "object") {
return j;
}
} catch (e) {}
return {};
}
function ModelMapping({ value, onChange, data, variant }: any) {
const dfsRef = useRef({} as { [binding: string]: HTMLSelectElement | null });
const columnsRef = useRef(
{} as { [binding: string]: HTMLSelectElement | HTMLInputElement | null },
);
const v: any = parseJsonOrEmpty(value);
v.map ??= {};
const dfs: { [df: string]: string[] } = {};
const inputs = data?.input_metadata?.value ?? data?.input_metadata ?? [];
for (const input of inputs) {
if (!input.dataframes) continue;
const dataframes = input.dataframes as {
[df: string]: { columns: string[] };
};
for (const [df, { columns }] of Object.entries(dataframes)) {
dfs[df] = columns;
}
}
const bindings = getModelBindings(data, variant);
function getMap() {
const map: Bindings = {};
for (const binding of bindings) {
const df = dfsRef.current[binding]?.value ?? "";
const column = columnsRef.current[binding]?.value ?? "";
if (df.length || column.length) {
map[binding] = { df, column };
}
}
return map;
}
return (
<table className="model-mapping-param">
<tbody>
{bindings.length > 0 ? (
bindings.map((binding: string) => (
<tr key={binding}>
<td>{binding}</td>
<td>
<ArrowsHorizontal />
</td>
<td>
<select
className="select select-ghost"
value={v.map?.[binding]?.df}
ref={(el) => {
dfsRef.current[binding] = el;
}}
onChange={() => onChange(JSON.stringify({ map: getMap() }))}
>
<option key="" value="" />
{Object.keys(dfs).map((df: string) => (
<option key={df} value={df}>
{df}
</option>
))}
</select>
</td>
<td>
{variant === "output" ? (
<Input
inputRef={(el) => {
columnsRef.current[binding] = el;
}}
value={v.map?.[binding]?.column}
onChange={(column, options) => {
const map = getMap();
// At this point the <input> has not been updated yet. We use the value from the event.
const df = dfsRef.current[binding]?.value ?? "";
map[binding] ??= { df, column };
map[binding].column = column;
onChange(JSON.stringify({ map }), options);
}}
/>
) : (
<select
className="select select-ghost"
value={v.map?.[binding]?.column}
ref={(el) => {
columnsRef.current[binding] = el;
}}
onChange={() => onChange(JSON.stringify({ map: getMap() }))}
>
<option key="" value="" />
{dfs[v.map?.[binding]?.df]?.map((col: string) => (
<option key={col} value={col}>
{col}
</option>
))}
</select>
)}
</td>
</tr>
))
) : (
<tr>
<td>no bindings</td>
</tr>
)}
</tbody>
</table>
);
}
interface NodeParameterProps {
name: string;
value: any;
meta: any;
data: any;
onChange: (value: any, options?: { delay: number }) => void;
}
export default function NodeParameter({ name, value, meta, data, onChange }: NodeParameterProps) {
return (
// biome-ignore lint/a11y/noLabelWithoutControl: Most of the time there is a control.
<label className="param">
{meta?.type?.format === "collapsed" ? (
<>
<ParamName name={name} />
<button className="collapsed-param">⋯</button>
</>
) : meta?.type?.format === "textarea" ? (
<>
<ParamName name={name} />
<textarea
className="textarea textarea-bordered w-full"
rows={6}
value={value}
onChange={(evt) => onChange(evt.currentTarget.value, { delay: 2 })}
onBlur={(evt) => onChange(evt.currentTarget.value, { delay: 0 })}
/>
</>
) : meta?.type?.enum ? (
<>
<ParamName name={name} />
<select
className="select select-bordered w-full"
value={value || meta.type.enum[0]}
onChange={(evt) => onChange(evt.currentTarget.value)}
>
{meta.type.enum.map((option: string) => (
<option key={option} value={option}>
{option}
</option>
))}
</select>
</>
) : meta?.type?.type === BOOLEAN ? (
<div className="form-control">
<label className="label cursor-pointer">
{name.replace(/_/g, " ")}
<input
className="checkbox"
type="checkbox"
checked={value}
onChange={(evt) => onChange(evt.currentTarget.checked)}
/>
</label>
</div>
) : meta?.type?.type === MODEL_TRAINING_INPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="training input" onChange={onChange} />
</>
) : meta?.type?.type === MODEL_INFERENCE_INPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="inference input" onChange={onChange} />
</>
) : meta?.type?.type === MODEL_OUTPUT_MAPPING ? (
<>
<ParamName name={name} />
<ModelMapping value={value} data={data} variant="output" onChange={onChange} />
</>
) : (
<>
<ParamName name={name} />
<Input value={value} onChange={onChange} />
</>
)}
</label>
);
}
|