Spaces:
Running
Running
File size: 10,257 Bytes
e1a2778 47e2956 805c550 47e2956 8f44c91 6f123b5 e1a2778 6f123b5 47e2956 f141fec e1a2778 a112474 e1a2778 6f123b5 e1a2778 083e188 e1a2778 083e188 6934d0a 6f123b5 e1a2778 6f123b5 e1a2778 805c550 e1a2778 6f123b5 e1a2778 8efcf30 bd29423 805c550 8f6e915 6f123b5 083e188 6f123b5 47e2956 805c550 47e2956 805c550 8f44c91 47e2956 805c550 47e2956 805c550 f141fec 47e2956 f141fec 2594c74 8f44c91 47e2956 8f44c91 805c550 a112474 6f123b5 f141fec 6f123b5 805c550 6f123b5 805c550 6f123b5 805c550 47e2956 805c550 6f123b5 805c550 47e2956 805c550 47e2956 c51c9b4 805c550 47e2956 805c550 f141fec 805c550 47e2956 805c550 47e2956 805c550 47e2956 805c550 a112474 47e2956 805c550 47e2956 805c550 47e2956 805c550 47e2956 805c550 47e2956 805c550 47e2956 805c550 f141fec 805c550 f141fec 47e2956 f141fec 8f44c91 47e2956 a112474 f141fec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
"""Boxes for defining PyTorch models."""
import copy
import graphlib
import types
import pydantic
from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg
import dataclasses
from . import core
ENV = "PyTorch model"
def reg(name, inputs=[], outputs=None, params=[]):
if outputs is None:
outputs = inputs
return ops.register_passive_op(
ENV,
name,
inputs=[ops.Input(name=name, position="bottom", type="tensor") for name in inputs],
outputs=[ops.Output(name=name, position="top", type="tensor") for name in outputs],
params=params,
)
reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
"Neural ODE",
inputs=["x"],
params=[
P.basic("relative_tolerance"),
P.basic("absolute_tolerance"),
P.options(
"method",
[
"dopri8",
"dopri5",
"bosh3",
"fehlberg2",
"adaptive_heun",
"euler",
"midpoint",
"rk4",
"explicit_adams",
"implicit_adams",
],
),
],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
"Graph conv",
inputs=["x", "edges"],
outputs=["x"],
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
"Activation",
inputs=["x"],
params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
"Optimizer",
inputs=["loss"],
outputs=[],
params=[
P.options(
"type",
[
"AdamW",
"Adafactor",
"Adagrad",
"SGD",
"Lion",
"Paged AdamW",
"Galore AdamW",
],
),
P.basic("lr", 0.001),
],
)
ops.register_passive_op(
ENV,
"Repeat",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[
ops.Parameter.basic("times", 1, int),
ops.Parameter.basic("same_weights", True, bool),
],
)
ops.register_passive_op(
ENV,
"Recurrent chain",
inputs=[ops.Input(name="input", position="top", type="tensor")],
outputs=[ops.Output(name="output", position="bottom", type="tensor")],
params=[],
)
def _to_id(*strings: str) -> str:
"""Replaces all non-alphanumeric characters with underscores."""
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
class ColumnSpec(pydantic.BaseModel):
df: str
column: str
class ModelMapping(pydantic.BaseModel):
map: dict[str, ColumnSpec]
@dataclasses.dataclass
class ModelConfig:
model: torch.nn.Module
model_inputs: list[str]
model_outputs: list[str]
loss_inputs: list[str]
loss: torch.nn.Module
optimizer: torch.optim.Optimizer
source_workspace: str | None = None
trained: bool = False
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
model_inputs = [inputs[i] for i in self.model_inputs]
output = self.model(*model_inputs)
if not isinstance(output, tuple):
output = (output,)
values = {k: v for k, v in zip(self.model_outputs, output)}
return values
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
# TODO: Do multiple batches.
self.model.eval()
return self._forward(inputs)
def train(self, inputs: dict[str, torch.Tensor]) -> float:
"""Train the model for one epoch. Returns the loss."""
# TODO: Do multiple batches.
self.model.train()
self.optimizer.zero_grad()
values = self._forward(inputs)
values.update(inputs)
loss_inputs = [values[i] for i in self.loss_inputs]
loss = self.loss(*loss_inputs)
loss.backward()
self.optimizer.step()
return loss.item()
def copy(self):
"""Returns a copy of the model."""
c = dataclasses.replace(self)
c.model = copy.deepcopy(self.model)
return c
def metadata(self):
return {
"type": "model",
"model": {
"inputs": self.model_inputs,
"outputs": self.model_outputs,
"loss_inputs": self.loss_inputs,
"trained": self.trained,
},
}
def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> ModelConfig:
"""Builds the model described in the workspace."""
catalog = ops.CATALOGS[ENV]
optimizers = []
nodes = {}
for node in ws.nodes:
nodes[node.id] = node
if node.data.title == "Optimizer":
optimizers.append(node.id)
assert optimizers, "No optimizer found."
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
[optimizer] = optimizers
dependencies = {n.id: [] for n in ws.nodes}
in_edges = {}
out_edges = {}
# TODO: Dissolve repeat boxes here.
for e in ws.edges:
dependencies[e.target].append(e.source)
in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
(e.source, e.sourceHandle)
)
out_edges.setdefault(e.source, {}).setdefault(e.sourceHandle, []).append(
(e.target, e.targetHandle)
)
sizes = {}
for k, i in inputs.items():
sizes[k] = i.shape[-1]
ts = graphlib.TopologicalSorter(dependencies)
layers = []
loss_layers = []
in_loss = set()
cfg = {}
used_in_model = set()
made_in_model = set()
used_in_loss = set()
made_in_loss = set()
for node_id in ts.static_order():
node = nodes[node_id]
t = node.data.title
op = catalog[t]
p = op.convert_params(node.data.params)
for b in dependencies[node_id]:
if b in in_loss:
in_loss.add(node_id)
if "loss" in t:
in_loss.add(node_id)
inputs = {}
for n in in_edges.get(node_id, []):
for b, h in in_edges[node_id][n]:
i = _to_id(b, h)
inputs[n] = i
if node_id in in_loss:
used_in_loss.add(i)
else:
used_in_model.add(i)
outputs = {}
for out in out_edges.get(node_id, []):
i = _to_id(node_id, out)
outputs[out] = i
if inputs: # Nodes with no inputs are input nodes. Their outputs are not "made" by us.
if node_id in in_loss:
made_in_loss.add(i)
else:
made_in_model.add(i)
inputs = types.SimpleNamespace(**inputs)
outputs = types.SimpleNamespace(**outputs)
ls = loss_layers if node_id in in_loss else layers
match t:
case "Linear":
isize = sizes.get(inputs.x, 1)
osize = isize if p["output_dim"] == "same" else int(p["output_dim"])
ls.append((torch.nn.Linear(isize, osize), f"{inputs.x} -> {outputs.x}"))
sizes[outputs.x] = osize
case "Activation":
f = getattr(torch.nn.functional, p["type"].name.lower().replace(" ", "_"))
ls.append((f, f"{inputs.x} -> {outputs.x}"))
sizes[outputs.x] = sizes.get(inputs.x, 1)
case "MSE loss":
ls.append(
(
torch.nn.functional.mse_loss,
f"{inputs.x}, {inputs.y} -> {outputs.loss}",
)
)
cfg["model_inputs"] = list(used_in_model - made_in_model)
cfg["model_outputs"] = list(made_in_model & used_in_loss)
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
# Make sure the trained output is output from the last model layer.
outputs = ", ".join(cfg["model_outputs"])
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}"))
# Create model.
cfg["model"] = pyg.nn.Sequential(", ".join(cfg["model_inputs"]), layers)
# Make sure the loss is output from the last loss layer.
[(lossb, lossh)] = in_edges[optimizer]["loss"]
lossi = _to_id(lossb, lossh)
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss"))
# Create loss function.
cfg["loss"] = pyg.nn.Sequential(", ".join(cfg["loss_inputs"]), loss_layers)
assert not list(cfg["loss"].parameters()), (
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
)
# Create optimizer.
op = catalog["Optimizer"]
p = op.convert_params(nodes[optimizer].data.params)
o = getattr(torch.optim, p["type"].name)
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
return ModelConfig(**cfg)
def to_tensors(b: core.Bundle, m: ModelMapping | None) -> dict[str, torch.Tensor]:
"""Converts a tensor to the correct type for PyTorch. Ignores missing mappings."""
if m is None:
return {}
tensors = {}
for k, v in m.map.items():
if v.df in b.dfs and v.column in b.dfs[v.df]:
tensors[k] = torch.tensor(b.dfs[v.df][v.column].to_list(), dtype=torch.float32)
return tensors
|