Spaces:
Running
Running
File size: 11,036 Bytes
9a98e24 15bcc0e 9a98e24 ca01fa3 5826642 a07e9cb b6d30cb ca01fa3 b6d30cb 9a98e24 e7fa7ee a07e9cb ca01fa3 15bcc0e e7fa7ee a07e9cb 15bcc0e a07e9cb 15bcc0e a07e9cb 9a98e24 15bcc0e 9a98e24 15bcc0e 9a98e24 15bcc0e a07e9cb 9a98e24 a07e9cb 15bcc0e a07e9cb 15bcc0e a07e9cb 15bcc0e a0194e7 15bcc0e a07e9cb 15bcc0e a07e9cb 9a98e24 15bcc0e a07e9cb 15bcc0e a07e9cb 15bcc0e a07e9cb 15bcc0e a07e9cb 15bcc0e e7fa7ee ca01fa3 9a98e24 15bcc0e ca01fa3 9a98e24 e7fa7ee 9e91869 15bcc0e ca01fa3 e7fa7ee 15bcc0e 5882a26 15bcc0e b6d30cb 9a98e24 5826642 15bcc0e b6d30cb 9a98e24 e7fa7ee 15bcc0e 942065e b6d30cb 15bcc0e ca01fa3 e7fa7ee 5826642 15bcc0e a18645a 9a98e24 e7fa7ee a07e9cb 15bcc0e 9a98e24 15bcc0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
"""Graph analytics operations. To be split into separate files when we have more."""
import os
from . import ops
from collections import deque
import dataclasses
import functools
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import traceback
import typing
op = ops.op_registration("LynxKite")
@dataclasses.dataclass
class RelationDefinition:
"""Defines a set of edges."""
df: str # The DataFrame that contains the edges.
source_column: (
str # The column in the edge DataFrame that contains the source node ID.
)
target_column: (
str # The column in the edge DataFrame that contains the target node ID.
)
source_table: str # The DataFrame that contains the source nodes.
target_table: str # The DataFrame that contains the target nodes.
source_key: str # The column in the source table that contains the node ID.
target_key: str # The column in the target table that contains the node ID.
@dataclasses.dataclass
class Bundle:
"""A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
It can also carry other data, such as a trained model.
"""
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = None
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes["id"] = nodes.index
return cls(
dfs={"edges": edges, "nodes": nodes},
relations=[
RelationDefinition(
df="edges",
source_column="source",
target_column="target",
source_table="nodes",
target_table="nodes",
source_key="id",
target_key="id",
)
],
)
@classmethod
def from_df(cls, df: pd.DataFrame):
return cls(dfs={"df": df})
def to_nx(self):
# TODO: Use relations.
graph = nx.from_pandas_edgelist(self.dfs["edges"])
if "nodes" in self.dfs:
nx.set_node_attributes(
graph, self.dfs["nodes"].set_index("id").to_dict("index")
)
return graph
def copy(self):
"""Returns a medium depth copy of the bundle. The Bundle is completely new, but the DataFrames and RelationDefinitions are shared."""
return Bundle(
dfs=dict(self.dfs),
relations=list(self.relations),
other=dict(self.other) if self.other else None,
)
def nx_node_attribute_func(name):
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws):
"""If an input plug is connected to multiple edges, keep only the last edge."""
seen = set()
for edge in reversed(ws.edges):
if (edge.target, edge.targetHandle) in seen:
ws.edges.remove(edge)
seen.add((edge.target, edge.targetHandle))
@ops.register_executor("LynxKite")
async def execute(ws):
catalog = ops.CATALOGS["LynxKite"]
disambiguate_edges(ws)
outputs = {}
failed = 0
while len(outputs) + failed < len(ws.nodes):
for node in ws.nodes:
if node.id in outputs:
continue
# TODO: Take the input/output handles into account.
inputs = [edge.source for edge in ws.edges if edge.target == node.id]
if all(input in outputs for input in inputs):
inputs = [outputs[input] for input in inputs]
data = node.data
op = catalog[data.title]
params = {**data.params}
# Convert inputs.
try:
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
if p.type == nx.Graph and isinstance(x, Bundle):
inputs[i] = x.to_nx()
elif p.type == Bundle and isinstance(x, nx.Graph):
inputs[i] = Bundle.from_nx(x)
elif p.type == Bundle and isinstance(x, pd.DataFrame):
inputs[i] = Bundle.from_df(x)
output = op(*inputs, **params)
except Exception as e:
traceback.print_exc()
data.error = str(e)
failed += 1
continue
if len(op.inputs) == 1 and op.inputs.get("multi") == "*":
# It's a flexible input. Create n+1 handles.
data.inputs = {f"input{i}": None for i in range(len(inputs) + 1)}
data.error = None
outputs[node.id] = output
if (
op.type == "visualization"
or op.type == "table_view"
or op.type == "image"
):
data.display = output
@op("Import Parquet")
def import_parquet(*, filename: str):
"""Imports a Parquet file."""
return pd.read_parquet(filename)
@op("Import CSV")
def import_csv(
*, filename: str, columns: str = "<from file>", separator: str = "<auto>"
):
"""Imports a CSV file."""
return pd.read_csv(
filename,
names=pd.api.extensions.no_default
if columns == "<from file>"
else columns.split(","),
sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
)
@op("Create scale-free graph")
def create_scale_free_graph(*, nodes: int = 10):
"""Creates a scale-free graph with the given number of nodes."""
return nx.scale_free_graph(nodes)
@op("Compute PageRank")
@nx_node_attribute_func("pagerank")
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
return nx.pagerank(graph, alpha=damping, max_iter=iterations)
@op("Compute betweenness centrality")
@nx_node_attribute_func("betweenness_centrality")
def compute_betweenness_centrality(graph: nx.Graph, *, k=10):
return nx.betweenness_centrality(graph, k=k, backend="cugraph")
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("SQL")
def sql(bundle: Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
with pl.Config() as cfg:
cfg.set_verbose(True)
res = (
pl.SQLContext(bundle.dfs)
.execute(query)
.collect(engine="gpu")
.to_pandas()
)
# TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
# which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
else:
res = pl.SQLContext(bundle.dfs).execute(query)
bundle.dfs[save_as] = res
return bundle
@op("Organize bundle")
def organize_bundle(bundle: Bundle, *, code: ops.LongStr):
"""Lets you rename/copy/delete DataFrames, and modify relations. TODO: Use a declarative solution instead of Python code. Add UI."""
bundle = bundle.copy()
exec(code, globals(), {"bundle": bundle})
return bundle
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
"""Takes a (preferably connected) subgraph."""
sample = set()
to_expand = deque([0])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
cmap = matplotlib.cm.get_cmap("viridis")
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value)
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in rgba[:, :3]
]
@op("Visualize graph", view="visualization")
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
nodes = graph.dfs["nodes"].copy()
if color_nodes_by:
nodes["color"] = _map_color(nodes[color_nodes_by])
nodes = nodes.to_records()
edges = graph.dfs["edges"].drop_duplicates(["source", "target"])
edges = edges.to_records()
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000 / len(nodes))))
v = {
"animationDuration": 500,
"animationEasingUpdate": "quinticInOut",
"series": [
{
"type": "graph",
"roam": True,
"lineStyle": {
"color": "gray",
"curveness": 0.3,
},
"emphasis": {
"focus": "adjacency",
"lineStyle": {
"width": 10,
},
},
"data": [
{
"id": str(n.id),
"x": float(pos[n.id][0]),
"y": float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
"symbolSize": 50 / len(nodes) ** 0.5,
"itemStyle": {"color": n.color} if color_nodes_by else {},
}
for n in nodes
],
"links": [
{"source": str(r.source), "target": str(r.target)} for r in edges
],
},
],
}
return v
def collect(df: pd.DataFrame):
if isinstance(df, pl.LazyFrame):
df = df.collect()
if isinstance(df, pl.DataFrame):
return [[d[c] for c in df.columns] for d in df.to_dicts()]
return df.values.tolist()
@op("View tables", view="table_view")
def view_tables(bundle: Bundle):
v = {
"dataframes": {
name: {
"columns": [str(c) for c in df.columns],
"data": collect(df),
}
for name, df in bundle.dfs.items()
},
"relations": bundle.relations,
"other": bundle.other,
}
return v
|