File size: 7,229 Bytes
ca01fa3
942065e
ca01fa3
54e01be
0c44583
ca01fa3
a18645a
 
942065e
d994c06
942065e
ca01fa3
 
52ec402
942065e
 
 
db436f7
786c330
942065e
 
 
 
db436f7
 
 
 
 
 
 
 
 
942065e
 
 
 
 
 
 
d994c06
 
960efe0
942065e
d994c06
54e01be
52ec402
 
942065e
52ec402
 
 
db436f7
ca01fa3
942065e
 
 
 
 
 
 
 
6a24dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942065e
 
960efe0
ca01fa3
d994c06
6a24dfe
 
 
942065e
ca01fa3
 
9e91869
21590fa
9e91869
21590fa
9e91869
21590fa
b6d30cb
a18645a
 
6a24dfe
 
d994c06
6a24dfe
a18645a
ca01fa3
 
 
3010d5b
ca01fa3
b6d30cb
3010d5b
 
 
 
 
 
 
 
ca01fa3
 
 
3010d5b
 
 
 
 
942065e
d994c06
942065e
ca01fa3
a18645a
 
 
0c44583
 
b6d30cb
a18645a
 
b6d30cb
 
a18645a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c44583
 
 
 
 
 
 
 
 
 
 
 
 
3010d5b
ca01fa3
 
 
 
 
6a24dfe
ca01fa3
 
d994c06
 
 
942065e
6a24dfe
942065e
3010d5b
 
 
ca01fa3
4524b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca01fa3
 
d994c06
 
 
 
 
 
6a24dfe
d994c06
6a24dfe
 
 
 
 
 
 
 
 
 
d994c06
b7a4f8b
 
 
 
6a24dfe
b7a4f8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
'''API for implementing LynxKite operations.'''
from __future__ import annotations
import dataclasses
import enum
import functools
import inspect
import networkx as nx
import pandas as pd
import pydantic
import typing
from typing_extensions import Annotated

ALL_OPS = {}
typeof = type # We have some arguments called "type".
def type_to_json(t):
  if isinstance(t, type) and issubclass(t, enum.Enum):
    return {'enum': list(t.__members__.keys())}
  if getattr(t, '__metadata__', None):
    return t.__metadata__[-1]
  return {'type': str(t)}
Type = Annotated[
  typing.Any, pydantic.PlainSerializer(type_to_json, return_type=dict)
]
LongStr = Annotated[
  str, {'format': 'textarea'}
]
PathStr = Annotated[
  str, {'format': 'path'}
]
CollapsedStr = Annotated[
  str, {'format': 'collapsed'}
]
class BaseConfig(pydantic.BaseModel):
  model_config = pydantic.ConfigDict(
    arbitrary_types_allowed=True,
  )


class Parameter(BaseConfig):
  '''Defines a parameter for an operation.'''
  name: str
  default: typing.Any
  type: Type = None

  @staticmethod
  def options(name, options, default=None):
    e = enum.Enum(f'OptionsFor_{name}', options)
    return Parameter.basic(name, e[default or options[0]], e)

  @staticmethod
  def collapsed(name, default, type=None):
    return Parameter.basic(name, default, CollapsedStr)

  @staticmethod
  def basic(name, default=None, type=None):
    if default is inspect._empty:
      default = None
    if type is None or type is inspect._empty:
      type = typeof(default) if default else None
    return Parameter(name=name, default=default, type=type)

class Input(BaseConfig):
  name: str
  type: Type
  position: str = 'left'

class Output(BaseConfig):
  name: str
  type: Type
  position: str = 'right'

MULTI_INPUT = Input(name='multi', type='*')
def basic_inputs(*names):
  return {name: Input(name=name, type=None) for name in names}
def basic_outputs(*names):
  return {name: Output(name=name, type=None) for name in names}


class Op(BaseConfig):
  func: typing.Callable = pydantic.Field(exclude=True)
  name: str
  params: dict[str, Parameter]
  inputs: dict[str, Input]
  outputs: dict[str, Output]
  type: str = 'basic' # The UI to use for this operation.
  sub_nodes: list[Op] = None # If set, these nodes can be placed inside the operation's node.

  def __call__(self, *inputs, **params):
    # Convert parameters.
    for p in params:
      if p in self.params:
        if self.params[p].type == int:
          params[p] = int(params[p])
        elif self.params[p].type == float:
          params[p] = float(params[p])
    # Convert inputs.
    inputs = list(inputs)
    for i, (x, p) in enumerate(zip(inputs, self.inputs.values())):
      if p.type == nx.Graph and isinstance(x, Bundle):
        inputs[i] = x.to_nx()
      elif p.type == Bundle and isinstance(x, nx.Graph):
        inputs[i] = Bundle.from_nx(x)
    res = self.func(*inputs, **params)
    return res


@dataclasses.dataclass
class RelationDefinition:
  '''Defines a set of edges.'''
  df: str # The DataFrame that contains the edges.
  source_column: str # The column in the edge DataFrame that contains the source node ID.
  target_column: str # The column in the edge DataFrame that contains the target node ID.
  source_table: str # The DataFrame that contains the source nodes.
  target_table: str # The DataFrame that contains the target nodes.
  source_key: str # The column in the source table that contains the node ID.
  target_key: str # The column in the target table that contains the node ID.

@dataclasses.dataclass
class Bundle:
  '''A collection of DataFrames and other data.

  Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
  It can also carry other data, such as a trained model.
  '''
  dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
  relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
  other: dict[str, typing.Any] = None

  @classmethod
  def from_nx(cls, graph: nx.Graph):
    edges = nx.to_pandas_edgelist(graph)
    d = dict(graph.nodes(data=True))
    nodes = pd.DataFrame(d.values(), index=d.keys())
    nodes['id'] = nodes.index
    return cls(
      dfs={'edges': edges, 'nodes': nodes},
      relations=[
        RelationDefinition(
          df='edges',
          source_column='source',
          target_column='target',
          source_table='nodes',
          target_table='nodes',
          source_key='id',
          target_key='id',
        )
      ]
    )

  def to_nx(self):
    graph = nx.from_pandas_edgelist(self.dfs['edges'])
    nx.set_node_attributes(graph, self.dfs['nodes'].set_index('id').to_dict('index'))
    return graph


def nx_node_attribute_func(name):
  '''Decorator for wrapping a function that adds a NetworkX node attribute.'''
  def decorator(func):
    @functools.wraps(func)
    def wrapper(graph: nx.Graph, **kwargs):
      graph = graph.copy()
      attr = func(graph, **kwargs)
      nx.set_node_attributes(graph, attr, name)
      return graph
    return wrapper
  return decorator


def op(name, *, view='basic', sub_nodes=None):
  '''Decorator for defining an operation.'''
  def decorator(func):
    sig = inspect.signature(func)
    # Positional arguments are inputs.
    inputs = {
      name: Input(name=name, type=param.annotation)
      for name, param in sig.parameters.items()
      if param.kind != param.KEYWORD_ONLY}
    params = {}
    for n, param in sig.parameters.items():
      if param.kind == param.KEYWORD_ONLY:
        params[n] = Parameter.basic(n, param.default, param.annotation)
    outputs = {'output': Output(name='output', type=None)} if view == 'basic' else {} # Maybe more fancy later.
    op = Op(func=func, name=name, params=params, inputs=inputs, outputs=outputs, type=view)
    if sub_nodes is not None:
      op.sub_nodes = sub_nodes
      op.type = 'sub_flow'
    ALL_OPS[name] = op
    func.__op__ = op
    return func
  return decorator

def input_position(**kwargs):
  '''Decorator for specifying unusual positions for the inputs.'''
  def decorator(func):
    op = func.__op__
    for k, v in kwargs.items():
      op.inputs[k].position = v
    return func
  return decorator

def output_position(**kwargs):
  '''Decorator for specifying unusual positions for the outputs.'''
  def decorator(func):
    op = func.__op__
    for k, v in kwargs.items():
      op.outputs[k].position = v
    return func
  return decorator

def no_op(*args, **kwargs):
  if args:
    return args[0]
  return Bundle()

def register_passive_op(name, inputs=[], outputs=['output'], params=[]):
  '''A passive operation has no associated code.'''
  op = Op(
    func=no_op,
    name=name,
    params={p.name: p for p in params},
    inputs=dict(
      (i, Input(name=i, type=None)) if isinstance(i, str)
      else (i.name, i) for i in inputs),
    outputs=dict(
      (o, Output(name=o, type=None)) if isinstance(o, str)
      else (o.name, o) for o in outputs))
  ALL_OPS[name] = op
  return op

def register_area(name, params=[]):
  '''A node that represents an area. It can contain other nodes, but does not restrict movement in any way.'''
  op = register_passive_op(name, params=params)
  op.type = 'area'