Spaces:
Running
Running
File size: 11,237 Bytes
1286e81 eebeb78 a1f037d 20e3edd 1286e81 b374298 1286e81 2ce5e93 a1f037d 2ce5e93 588b95c 1286e81 91028c0 1286e81 a1f037d 2ce5e93 0eba73c 1286e81 20e3edd 1286e81 a1f037d 0eba73c a1f037d 1286e81 a1f037d 1286e81 d07865c de78af1 2ce5e93 0eba73c de78af1 e70ffc1 f490f11 c5586ab 78209bc de78af1 2ce5e93 a1f037d 0eba73c f490f11 903083d 78209bc 0eba73c 78209bc 0eba73c c5586ab 78209bc 2ce5e93 0eba73c 2ce5e93 0eba73c e70ffc1 f490f11 e70ffc1 0eba73c 2ce5e93 d07865c 0eba73c e70ffc1 d07865c 2ce5e93 e70ffc1 f8e2c8b 2ce5e93 2213315 d07865c 2ce5e93 12d3e1a 2ce5e93 d07865c b374298 d07865c 2ce5e93 d07865c b374298 0eba73c 78209bc d07865c 0eba73c d07865c b374298 d07865c b374298 d07865c 12d3e1a 0eba73c e70ffc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
from _utils.langchain_utils.LLM_class import LLM
from typing import Any, List, Dict, Tuple, Optional, Union, cast
from anthropic import Anthropic, AsyncAnthropic
import logging
from langchain.schema import Document
from llama_index import Document as Llama_Index_Document
import asyncio
from typing import List
from dataclasses import dataclass
from _utils.gerar_documento_utils.llm_calls import (
aclaude_answer,
agemini_answer,
agpt_answer,
)
from _utils.gerar_documento_utils.prompts import contextual_prompt
from _utils.models.gerar_documento import (
ContextualizedChunk,
DocumentChunk,
RetrievalConfig,
)
from langchain_core.messages import HumanMessage
from gerar_documento.serializer import (
GerarDocumentoComPDFProprioSerializerData,
GerarDocumentoSerializerData,
)
from setup.logging import Axiom
import re
class ContextualRetriever:
def __init__(
self,
serializer: Union[
GerarDocumentoSerializerData, GerarDocumentoComPDFProprioSerializerData, Any
],
):
self.lista_contador = []
self.contextual_retriever_utils = ContextualRetrieverUtils()
self.config = RetrievalConfig(
num_chunks=serializer.num_chunks_retrieval,
embedding_weight=serializer.embedding_weight,
bm25_weight=serializer.bm25_weight,
context_window=serializer.context_window,
chunk_overlap=serializer.chunk_overlap,
)
self.logger = logging.getLogger(__name__)
self.bm25 = None
self.claude_context_model = serializer.claude_context_model
self.claude_api_key = os.environ.get("CLAUDE_API_KEY", "")
self.claude_client = AsyncAnthropic(api_key=self.claude_api_key)
async def llm_call_uma_lista_de_chunks(
self,
lista_com_20_chunks: List[DocumentChunk],
resumo_auxiliar,
axiom_instance: Axiom,
) -> List[List[str]]:
all_chunks_contents, all_document_ids = (
self.contextual_retriever_utils.get_all_document_ids_and_contents(
lista_com_20_chunks
)
)
try:
print("\n\nCOMEÇOU A REQUISIÇÃO")
prompt = contextual_prompt(
resumo_auxiliar, all_chunks_contents, len(lista_com_20_chunks)
)
for attempt in range(4):
if attempt != 0:
axiom_instance.send_axiom(
f"------------- FORMATAÇÃO DO CONTEXTUAL INCORRETA - TENTANDO NOVAMENTE (TENTATIVA: {attempt + 1}) -------------"
)
print("COMEÇANDO UMA REQUISIÇÃO DO CONTEXTUAL")
raw_response = await agemini_answer(prompt, "gemini-2.0-flash-lite")
response = cast(str, raw_response)
axiom_instance.send_axiom(
f"RESPOSTA LLM DE UM ITEM DA LISTA DE 20 CHUNKS: {response}"
)
print("TERMINOU UMA REQUISIÇÃO DO CONTEXTUAL")
matches = (
self.contextual_retriever_utils.validate_many_chunks_in_one_request(
response, all_document_ids
)
)
if matches:
axiom_instance.send_axiom(
f"CONTEXTUAL FUNCIONOU NA TENTATIVA {attempt + 1}"
)
result = (
self.contextual_retriever_utils.get_info_from_validated_chunks(
matches
)
)
break
if result is None:
axiom_instance.send_axiom(
f"-------------- UMA LISTA DE 20 CHUNKS FALHOU AS 4x NA FORMATAÇÃO ------------- {response}"
)
result = [[""]] # default value if no iteration succeeded
return result
except Exception as e:
self.logger.error(f"Context generation failed for chunks .... : {str(e)}")
return [[""]]
async def contextualize_uma_lista_de_20_chunks(
self,
lista_com_20_chunks: List[DocumentChunk],
response_auxiliar_summary,
axiom_instance: Axiom,
):
self.lista_contador.append(0)
print("contador: ", len(self.lista_contador))
result = await self.llm_call_uma_lista_de_chunks(
lista_com_20_chunks, response_auxiliar_summary, axiom_instance
)
lista_chunks: List[ContextualizedChunk] = []
for index, chunk in enumerate(lista_com_20_chunks):
try:
lista_chunks.append(
ContextualizedChunk(
contextual_summary=result[index][2],
content=chunk.content,
page_number=chunk.page_number,
id_do_processo=int(result[index][0]),
chunk_id=chunk.chunk_id,
start_char=chunk.start_char,
end_char=chunk.end_char,
context=result[index][1],
)
)
except BaseException as e:
print(
f"ERRO EM UMA LISTA COM 20 CHUNKS CONTEXTUALS {index + 1}: {result} ------- {e}"
)
axiom_instance.send_axiom(f"UMA LISTA COM 20 CHUNKS: {lista_chunks}")
return lista_chunks
async def contextualize_all_chunks(
self,
all_PDFs_chunks: List[DocumentChunk],
response_auxiliar_summary,
axiom_instance: Axiom,
) -> List[ContextualizedChunk]:
"""Add context to all chunks"""
lista_de_listas_cada_com_20_chunks = (
self.contextual_retriever_utils.get_lista_de_listas_cada_com_20_chunks(
all_PDFs_chunks
)
)
def processa_uma_lista_de_20_chunks(lista_com_20_chunks: List[DocumentChunk]):
coroutine = self.contextualize_uma_lista_de_20_chunks(
lista_com_20_chunks, response_auxiliar_summary, axiom_instance
)
return tg.create_task(coroutine)
async with asyncio.TaskGroup() as tg:
tasks = [
processa_uma_lista_de_20_chunks(lista_com_20_chunks)
for lista_com_20_chunks in lista_de_listas_cada_com_20_chunks
]
# contextualized_chunks = [task.result() for task in tasks]
contextualized_chunks = []
for task in tasks:
contextualized_chunks = contextualized_chunks + task.result()
return contextualized_chunks
@dataclass
class ContextualRetrieverUtils:
def get_all_document_ids_and_contents(
self, lista_com_20_chunks: List[DocumentChunk]
):
contador = 1
all_chunks_contents = ""
all_document_ids = []
for chunk in lista_com_20_chunks:
all_chunks_contents += f"\n\nCHUNK {contador}:\n"
all_chunks_contents += chunk.content
pattern = r"Num\. (\d+)"
import re
match = re.search(pattern, chunk.content)
if match:
number = match.group(1) # Extract the number
else:
number = 0
all_document_ids.append(int(number))
contador += 1
return all_chunks_contents, all_document_ids
def get_info_from_validated_chunks(self, matches):
result = [
[int(doc_id), title.strip(), content.strip()]
for doc_id, title, content in matches
]
return result
def get_lista_de_listas_cada_com_20_chunks(
self, all_PDFs_chunks: List[DocumentChunk]
):
return [all_PDFs_chunks[i : i + 20] for i in range(0, len(all_PDFs_chunks), 20)]
def validate_many_chunks_in_one_request(
self, response: str, lista_de_document_ids: List[int]
):
context = (
response.replace("document_id: ", "")
.replace("document_id:", "")
.replace("DOCUMENT_ID: ", "")
.replace("DOCUMENT_ID: ", "")
)
# pattern = r"\[(\d+|[-.]+)\] --- (.+?) --- (.+?)</chunk_context>" # Funciona para quando a resposta do LLM não vem com "document_id" escrito
matches = self.check_regex_patterns(context, lista_de_document_ids)
if not matches:
return False
matches_as_list = []
for index, match in enumerate(list(matches)):
if index >= 20:
break
resultado = match[0].replace(".", "").replace("-", "")
resultado = lista_de_document_ids[index]
matches_as_list.append((resultado, match[1], match[2]))
if len(matches) == 0:
print(
"----------- ERROU NA TENTATIVA ATUAL DE FORMATAR O CONTEXTUAL -----------"
)
return False
return matches_as_list
def check_regex_patterns(self, context: str, lista_de_document_ids: List[int]):
patterns = [
# r"\[*([\d.\-]+)\]*\s*---\s*\[*([^]]+)\]*\s*---\s*\[*([^]]+)\]*\s*</chunk_context>", # PRIMEIRO DE TODOS
# r"<chunk_context>\s*([\d.\-]+)\s*---\s*([^<]+)\s*---\s*([^<]+)\s*</chunk_context>",
r"\[(.*?)\] --- \[(.*?)\] --- \[(.*?)\](?=\n|\s*$)",
r"<chunk_context>\s*(\d+)(?:\s*-\s*Pág\.\s*\d+)?\s*---\s*([^-\n]+)\s*---\s*([^<]+)</chunk_context>",
r"<chunk_context>\s*(?:\[*([\d]+)\]*\s*[-–]*\s*(?:Pág\.\s*\d+\s*[-–]*)?)?\s*\[*([^\]]+)\]*\s*[-–]*\s*\[*([^\]]+)\]*\s*[-–]*\s*\[*([^\]]+)\]*\s*</chunk_context>",
# r"\[([\d.\-]+)\]\s*---\s*\[([^]]+)\]\s*---\s*\[([^]]+)\]\s*</chunk_context>",
# r"<chunk_context>\s*\[?([\d.\-]+)\]?\s*---\s*\[?([^\]\[]+?)\]?\s*---\s*\[?([^<]+?)\]?\s*</chunk_context>",
# r"<chunk_context>\s*\[([\d.\-]+)\]\s*---\s*\[([^\]]+)\]\s*---\s*\[([^\]]+)\]\s*</chunk_context>"
# r"<chunk_context>\s*\[?([\d.\-\s]+)\]?\s*---\s*\[?([^\]\[]+?)\]?\s*---\s*\[?([\s\S]+?)\]?\s*</chunk_context>",
]
resultado = None
for pattern in patterns:
matches: List[str] = re.findall(pattern, context, re.DOTALL)
condition_tuples_3_items = all(len(m) == 3 for m in matches)
if len(matches) == len(lista_de_document_ids) and condition_tuples_3_items:
print("\n--------------- REGEX DO CONTEXTUAL FUNCIONOU")
resultado = []
for m in matches:
regex = r"Num\.\s*(\d+)\s*-"
page_id = re.search(regex, m[0])
if page_id:
first_item = page_id.group(1)
else:
first_item = "0"
resultado.append((first_item, m[1], m[2]))
break
return resultado
# Código comentado abaixo é para ler as páginas ao redor da página atual do chunk
# page_content = ""
# for i in range(
# max(0, chunk.page_number - 1),
# min(len(single_page_text), chunk.page_number + 2),
# ):
# page_content += single_page_text[i].page_content if single_page_text[i] else ""
|