Spaces:
Running
Running
luanpoppe
commited on
Commit
·
d07865c
1
Parent(s):
39fc36b
feat: pequenas melhorias
Browse files- _utils/gerar_relatorio_modelo_usuario/EnhancedDocumentSummarizer.py +1 -9
- _utils/gerar_relatorio_modelo_usuario/contextual_retriever.py +58 -206
- _utils/gerar_relatorio_modelo_usuario/utils.py +55 -0
- _utils/resumo_completo_cursor.py +23 -10
- tests/gerar_relatorio_modelo_usuario/test_contextual_retriever.py +2 -0
_utils/gerar_relatorio_modelo_usuario/EnhancedDocumentSummarizer.py
CHANGED
|
@@ -20,15 +20,12 @@ from _utils.models.gerar_relatorio import (
|
|
| 20 |
)
|
| 21 |
from modelos_usuarios.serializer import ModeloUsuarioSerializer
|
| 22 |
from setup.environment import api_url
|
| 23 |
-
|
| 24 |
-
ContextualRetriever,
|
| 25 |
-
)
|
| 26 |
from asgiref.sync import sync_to_async
|
| 27 |
|
| 28 |
|
| 29 |
class EnhancedDocumentSummarizer(DocumentSummarizer):
|
| 30 |
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
| 31 |
-
claude_api_key = os.environ.get("CLAUDE_API_KEY", "")
|
| 32 |
|
| 33 |
def __init__(
|
| 34 |
self,
|
|
@@ -38,7 +35,6 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 38 |
chunk_overlap,
|
| 39 |
num_k_rerank,
|
| 40 |
model_cohere_rerank,
|
| 41 |
-
claude_context_model,
|
| 42 |
prompt_auxiliar,
|
| 43 |
gpt_model,
|
| 44 |
gpt_temperature,
|
|
@@ -56,14 +52,10 @@ class EnhancedDocumentSummarizer(DocumentSummarizer):
|
|
| 56 |
model_cohere_rerank,
|
| 57 |
)
|
| 58 |
self.config = config
|
| 59 |
-
self.contextual_retriever = ContextualRetriever(
|
| 60 |
-
config, self.claude_api_key, claude_context_model
|
| 61 |
-
)
|
| 62 |
self.logger = logging.getLogger(__name__)
|
| 63 |
self.prompt_auxiliar = prompt_auxiliar
|
| 64 |
self.gpt_model = gpt_model
|
| 65 |
self.gpt_temperature = gpt_temperature
|
| 66 |
-
# self.id_modelo_do_usuario = id_modelo_do_usuario
|
| 67 |
self.prompt_gerar_documento = prompt_gerar_documento
|
| 68 |
self.reciprocal_rank_fusion = reciprocal_rank_fusion
|
| 69 |
self.resumo_gerado = ""
|
|
|
|
| 20 |
)
|
| 21 |
from modelos_usuarios.serializer import ModeloUsuarioSerializer
|
| 22 |
from setup.environment import api_url
|
| 23 |
+
|
|
|
|
|
|
|
| 24 |
from asgiref.sync import sync_to_async
|
| 25 |
|
| 26 |
|
| 27 |
class EnhancedDocumentSummarizer(DocumentSummarizer):
|
| 28 |
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
|
|
|
|
| 29 |
|
| 30 |
def __init__(
|
| 31 |
self,
|
|
|
|
| 35 |
chunk_overlap,
|
| 36 |
num_k_rerank,
|
| 37 |
model_cohere_rerank,
|
|
|
|
| 38 |
prompt_auxiliar,
|
| 39 |
gpt_model,
|
| 40 |
gpt_temperature,
|
|
|
|
| 52 |
model_cohere_rerank,
|
| 53 |
)
|
| 54 |
self.config = config
|
|
|
|
|
|
|
|
|
|
| 55 |
self.logger = logging.getLogger(__name__)
|
| 56 |
self.prompt_auxiliar = prompt_auxiliar
|
| 57 |
self.gpt_model = gpt_model
|
| 58 |
self.gpt_temperature = gpt_temperature
|
|
|
|
| 59 |
self.prompt_gerar_documento = prompt_gerar_documento
|
| 60 |
self.reciprocal_rank_fusion = reciprocal_rank_fusion
|
| 61 |
self.resumo_gerado = ""
|
_utils/gerar_relatorio_modelo_usuario/contextual_retriever.py
CHANGED
|
@@ -1,33 +1,16 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
from _utils.LLMs.LLM_class import LLM
|
| 4 |
-
from _utils.gerar_relatorio_modelo_usuario.prompts import (
|
| 5 |
-
prompt_auxiliar_do_contextual_prompt,
|
| 6 |
-
create_prompt_auxiliar_do_contextual_prompt,
|
| 7 |
-
)
|
| 8 |
-
from _utils.bubble_integrations.obter_arquivo import get_pdf_from_bubble
|
| 9 |
-
from _utils.chains.Chain_class import Chain
|
| 10 |
from _utils.gerar_relatorio_modelo_usuario.utils import (
|
|
|
|
| 11 |
validate_many_chunks_in_one_request,
|
| 12 |
)
|
| 13 |
-
from _utils.handle_files import return_document_list_with_llama_parser
|
| 14 |
-
from _utils.prompts.Prompt_class import Prompt
|
| 15 |
-
from _utils.splitters.Splitter_class import Splitter
|
| 16 |
-
from setup.easy_imports import PyPDFLoader
|
| 17 |
-
from langchain_openai import ChatOpenAI
|
| 18 |
from typing import List, Dict, Tuple, Optional, cast
|
| 19 |
from anthropic import Anthropic, AsyncAnthropic
|
| 20 |
import logging
|
| 21 |
from langchain.schema import Document
|
| 22 |
from llama_index import Document as Llama_Index_Document
|
| 23 |
import asyncio
|
| 24 |
-
from langchain.prompts import PromptTemplate
|
| 25 |
from typing import List
|
| 26 |
-
from multiprocessing import Process, Barrier, Queue
|
| 27 |
from dataclasses import dataclass
|
| 28 |
-
from langchain_core.messages import HumanMessage
|
| 29 |
-
from asgiref.sync import sync_to_async
|
| 30 |
-
from setup.easy_imports import ChatPromptTemplate, ChatOpenAI
|
| 31 |
|
| 32 |
from _utils.gerar_relatorio_modelo_usuario.llm_calls import aclaude_answer, agpt_answer
|
| 33 |
from _utils.gerar_relatorio_modelo_usuario.prompts import contextual_prompt
|
|
@@ -36,161 +19,30 @@ from _utils.models.gerar_relatorio import (
|
|
| 36 |
DocumentChunk,
|
| 37 |
RetrievalConfig,
|
| 38 |
)
|
| 39 |
-
from _utils.prompts.Prompt_class import prompt as prompt_obj
|
| 40 |
|
| 41 |
lista_contador = []
|
| 42 |
|
| 43 |
|
| 44 |
class ContextualRetriever:
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
):
|
| 48 |
self.config = config
|
| 49 |
-
# self.claude_client = Anthropic(api_key=claude_api_key)
|
| 50 |
-
self.claude_client = AsyncAnthropic(api_key=claude_api_key)
|
| 51 |
self.logger = logging.getLogger(__name__)
|
| 52 |
self.bm25 = None
|
| 53 |
self.claude_context_model = claude_context_model
|
| 54 |
|
| 55 |
-
|
| 56 |
-
self
|
| 57 |
-
|
| 58 |
-
"""Add context to all chunks"""
|
| 59 |
-
contextualized_chunks = []
|
| 60 |
-
full_text = ""
|
| 61 |
-
for x in full_text_as_array:
|
| 62 |
-
full_text += x
|
| 63 |
-
|
| 64 |
-
prompt_auxiliar_summary = create_prompt_auxiliar_do_contextual_prompt(full_text)
|
| 65 |
-
|
| 66 |
-
print("\n\n\nprompt_auxiliar_summary[0:500]: ", prompt_auxiliar_summary[0:500])
|
| 67 |
-
|
| 68 |
-
# Claude comentado pois o limite de tokens estava sendo passado pela requisição e dava erro
|
| 69 |
-
# response_auxiliar_summary = await aclaude_answer(
|
| 70 |
-
# self.claude_client, self.claude_context_model, prompt_auxiliar_summary
|
| 71 |
-
# )
|
| 72 |
-
|
| 73 |
-
llms = LLM()
|
| 74 |
-
response_auxiliar_summary = await llms.googleGemini().ainvoke(
|
| 75 |
-
[HumanMessage(content=prompt_auxiliar_summary)]
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
print("\n\n\n\nresponse_auxiliar_summary: ", response_auxiliar_summary.content)
|
| 79 |
-
|
| 80 |
-
lista_de_listas_cada_com_20_chunks = [
|
| 81 |
-
chunks[i : i + 20] for i in range(0, len(chunks), 20)
|
| 82 |
-
]
|
| 83 |
-
print(
|
| 84 |
-
"lista_de_listas_cada_com_20_chunks: ", lista_de_listas_cada_com_20_chunks
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
async with asyncio.TaskGroup() as tg:
|
| 88 |
-
tasks = [
|
| 89 |
-
tg.create_task(
|
| 90 |
-
self.create_contextualized_chunk(
|
| 91 |
-
chunk, full_text_as_array, response_auxiliar_summary.content
|
| 92 |
-
)
|
| 93 |
-
)
|
| 94 |
-
# for chunk in chunks # ORIGINAL
|
| 95 |
-
for chunk in lista_de_listas_cada_com_20_chunks
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
# contextualized_chunks = [task.result() for task in tasks]
|
| 99 |
-
contextualized_chunks = []
|
| 100 |
-
for task in tasks:
|
| 101 |
-
# print("\n\ntask", task)
|
| 102 |
-
# print("\n\ntask.result()", task.result())
|
| 103 |
-
|
| 104 |
-
contextualized_chunks = contextualized_chunks + task.result()
|
| 105 |
-
|
| 106 |
-
return contextualized_chunks
|
| 107 |
-
|
| 108 |
-
# ORIGINAL
|
| 109 |
-
# async def create_contextualized_chunk(
|
| 110 |
-
# self, chunk, single_page_text, response_auxiliar_summary
|
| 111 |
-
# ):
|
| 112 |
-
# lista_contador.append(0)
|
| 113 |
-
# print("contador: ", len(lista_contador))
|
| 114 |
-
# page_number = chunk.page_number - 1
|
| 115 |
-
# page_content = single_page_text[page_number].page_content
|
| 116 |
-
|
| 117 |
-
# context = await self.llm_generate_context(
|
| 118 |
-
# page_content, chunk, response_auxiliar_summary
|
| 119 |
-
# )
|
| 120 |
-
# print("context: ", context)
|
| 121 |
-
# return ContextualizedChunk(
|
| 122 |
-
# content=chunk.content,
|
| 123 |
-
# page_number=chunk.page_number,
|
| 124 |
-
# chunk_id=chunk.chunk_id,
|
| 125 |
-
# start_char=chunk.start_char,
|
| 126 |
-
# end_char=chunk.end_char,
|
| 127 |
-
# context=context,
|
| 128 |
-
# )
|
| 129 |
-
|
| 130 |
-
async def create_contextualized_chunk(
|
| 131 |
-
self, chunks: List[DocumentChunk], single_page_text, response_auxiliar_summary
|
| 132 |
-
):
|
| 133 |
-
|
| 134 |
-
lista_contador.append(0)
|
| 135 |
-
print("contador: ", len(lista_contador))
|
| 136 |
-
# all_pages_contents = ""
|
| 137 |
-
# contador = 1
|
| 138 |
-
# for chunk in chunks:
|
| 139 |
-
# page_number = chunk.page_number - 1
|
| 140 |
-
# page_content = single_page_text[page_number].page_content
|
| 141 |
-
|
| 142 |
-
# all_pages_contents += page_content
|
| 143 |
-
# contador += 1
|
| 144 |
-
|
| 145 |
-
result = await self.llm_generate_context(chunks, response_auxiliar_summary)
|
| 146 |
-
|
| 147 |
-
lista_chunks = []
|
| 148 |
-
for index, chunk in enumerate(chunks):
|
| 149 |
-
lista_chunks.append(
|
| 150 |
-
ContextualizedChunk(
|
| 151 |
-
contextual_summary=result[index][2],
|
| 152 |
-
content=chunk.content,
|
| 153 |
-
page_number=chunk.page_number,
|
| 154 |
-
id_do_processo=int(result[index][0]),
|
| 155 |
-
chunk_id=chunk.chunk_id,
|
| 156 |
-
start_char=chunk.start_char,
|
| 157 |
-
end_char=chunk.end_char,
|
| 158 |
-
context=result[index][1],
|
| 159 |
-
)
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
return lista_chunks
|
| 163 |
-
|
| 164 |
-
# ORIGINAL
|
| 165 |
-
# async def llm_generate_context(
|
| 166 |
-
# self, page_text: str, chunk: DocumentChunk, resumo_auxiliar
|
| 167 |
-
# ) -> str:
|
| 168 |
-
# """Generate contextual description using ChatOpenAI"""
|
| 169 |
-
# try:
|
| 170 |
-
# print("COMEÇOU A REQUISIÇÃO")
|
| 171 |
-
# prompt = contextual_prompt(page_text, resumo_auxiliar, chunk.content)
|
| 172 |
-
# # response = await aclaude_answer(
|
| 173 |
-
# # self.claude_client, self.claude_context_model, prompt
|
| 174 |
-
# # )
|
| 175 |
-
|
| 176 |
-
# # response = await agpt_answer(prompt)
|
| 177 |
-
# llms = LLM()
|
| 178 |
-
# response = await llms.deepseek().ainvoke([HumanMessage(content=prompt)])
|
| 179 |
-
# return cast(str, response.content)
|
| 180 |
-
# except Exception as e:
|
| 181 |
-
# self.logger.error(
|
| 182 |
-
# f"Context generation failed for chunk {chunk.chunk_id}: {str(e)}"
|
| 183 |
-
# )
|
| 184 |
-
# return ""
|
| 185 |
|
| 186 |
-
async def
|
| 187 |
-
self,
|
| 188 |
) -> str:
|
| 189 |
"""Generate contextual description using ChatOpenAI"""
|
| 190 |
contador = 1
|
| 191 |
all_chunks_contents = ""
|
| 192 |
|
| 193 |
-
for chunk in
|
| 194 |
all_chunks_contents += chunk.content
|
| 195 |
all_chunks_contents += f"\n\n CHUNK {contador}:\n"
|
| 196 |
contador += 1
|
|
@@ -203,7 +55,9 @@ class ContextualRetriever:
|
|
| 203 |
# )
|
| 204 |
|
| 205 |
for attempt in range(4):
|
| 206 |
-
print(
|
|
|
|
|
|
|
| 207 |
raw_response = await agpt_answer(prompt)
|
| 208 |
response = cast(str, raw_response)
|
| 209 |
# llms = LLM()
|
|
@@ -211,7 +65,6 @@ class ContextualRetriever:
|
|
| 211 |
# return cast(str, response.content)
|
| 212 |
|
| 213 |
matches = validate_many_chunks_in_one_request(response)
|
| 214 |
-
# Convert matches to the desired format
|
| 215 |
|
| 216 |
if matches:
|
| 217 |
result = [
|
|
@@ -224,62 +77,61 @@ class ContextualRetriever:
|
|
| 224 |
self.logger.error(f"Context generation failed for chunks .... : {str(e)}")
|
| 225 |
return ""
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
# return
|
| 233 |
-
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
serializer, contextual_retriever: ContextualRetriever, pages, all_PDFs_chunks
|
| 238 |
-
):
|
| 239 |
-
if serializer["should_have_contextual_chunks"]:
|
| 240 |
-
contextualized_chunks = await contextual_retriever.contextualize_all_chunks(
|
| 241 |
-
pages, all_PDFs_chunks
|
| 242 |
)
|
| 243 |
-
chunks_passados = contextualized_chunks
|
| 244 |
-
is_contextualized_chunk = True
|
| 245 |
-
else:
|
| 246 |
-
chunks_passados = all_PDFs_chunks
|
| 247 |
-
is_contextualized_chunk = False
|
| 248 |
-
|
| 249 |
-
return chunks_passados, is_contextualized_chunk
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
listaPDFs: List[str],
|
| 254 |
-
splitterObject: Splitter,
|
| 255 |
-
should_use_llama_parse: bool,
|
| 256 |
-
isBubble: bool,
|
| 257 |
-
):
|
| 258 |
-
all_PDFs_chunks = []
|
| 259 |
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
# pages = pages + await get_pdf_from_bubble(pdf_path, should_use_llama_parse)
|
| 266 |
-
# else:
|
| 267 |
-
# if should_use_llama_parse:
|
| 268 |
-
# pages = pages + await return_document_list_with_llama_parser(pdf_path)
|
| 269 |
-
# else:
|
| 270 |
-
# pages = pages + PyPDFLoader(pdf_path).load()
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
|
| 283 |
|
| 284 |
|
| 285 |
# Código comentado abaixo é para ler as páginas ao redor da página atual do chunk
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from _utils.gerar_relatorio_modelo_usuario.utils import (
|
| 3 |
+
get_response_from_auxiliar_contextual_prompt,
|
| 4 |
validate_many_chunks_in_one_request,
|
| 5 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from typing import List, Dict, Tuple, Optional, cast
|
| 7 |
from anthropic import Anthropic, AsyncAnthropic
|
| 8 |
import logging
|
| 9 |
from langchain.schema import Document
|
| 10 |
from llama_index import Document as Llama_Index_Document
|
| 11 |
import asyncio
|
|
|
|
| 12 |
from typing import List
|
|
|
|
| 13 |
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
from _utils.gerar_relatorio_modelo_usuario.llm_calls import aclaude_answer, agpt_answer
|
| 16 |
from _utils.gerar_relatorio_modelo_usuario.prompts import contextual_prompt
|
|
|
|
| 19 |
DocumentChunk,
|
| 20 |
RetrievalConfig,
|
| 21 |
)
|
|
|
|
| 22 |
|
| 23 |
lista_contador = []
|
| 24 |
|
| 25 |
|
| 26 |
class ContextualRetriever:
|
| 27 |
+
|
| 28 |
+
def __init__(self, config: RetrievalConfig, claude_context_model: str):
|
|
|
|
| 29 |
self.config = config
|
|
|
|
|
|
|
| 30 |
self.logger = logging.getLogger(__name__)
|
| 31 |
self.bm25 = None
|
| 32 |
self.claude_context_model = claude_context_model
|
| 33 |
|
| 34 |
+
self.claude_api_key = os.environ.get("CLAUDE_API_KEY", "")
|
| 35 |
+
self.claude_client = AsyncAnthropic(api_key=self.claude_api_key)
|
| 36 |
+
# self.claude_client = Anthropic(api_key=claude_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
async def llm_call_uma_lista_de_chunks(
|
| 39 |
+
self, lista_com_20_chunks: List[DocumentChunk], resumo_auxiliar
|
| 40 |
) -> str:
|
| 41 |
"""Generate contextual description using ChatOpenAI"""
|
| 42 |
contador = 1
|
| 43 |
all_chunks_contents = ""
|
| 44 |
|
| 45 |
+
for chunk in lista_com_20_chunks:
|
| 46 |
all_chunks_contents += chunk.content
|
| 47 |
all_chunks_contents += f"\n\n CHUNK {contador}:\n"
|
| 48 |
contador += 1
|
|
|
|
| 55 |
# )
|
| 56 |
|
| 57 |
for attempt in range(4):
|
| 58 |
+
print(
|
| 59 |
+
f"\n\nTENTATIVA FORMATAÇÃO CHUNKS NÚMERO {attempt}: {all_chunks_contents[0:500]}"
|
| 60 |
+
)
|
| 61 |
raw_response = await agpt_answer(prompt)
|
| 62 |
response = cast(str, raw_response)
|
| 63 |
# llms = LLM()
|
|
|
|
| 65 |
# return cast(str, response.content)
|
| 66 |
|
| 67 |
matches = validate_many_chunks_in_one_request(response)
|
|
|
|
| 68 |
|
| 69 |
if matches:
|
| 70 |
result = [
|
|
|
|
| 77 |
self.logger.error(f"Context generation failed for chunks .... : {str(e)}")
|
| 78 |
return ""
|
| 79 |
|
| 80 |
+
async def contextualize_uma_lista_de_chunks(
|
| 81 |
+
self, lista_com_20_chunks: List[DocumentChunk], response_auxiliar_summary
|
| 82 |
+
):
|
| 83 |
+
lista_contador.append(0)
|
| 84 |
+
print("contador: ", len(lista_contador))
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
result = await self.llm_call_uma_lista_de_chunks(
|
| 87 |
+
lista_com_20_chunks, response_auxiliar_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
lista_chunks = []
|
| 91 |
+
for index, chunk in enumerate(lista_com_20_chunks):
|
| 92 |
+
lista_chunks.append(
|
| 93 |
+
ContextualizedChunk(
|
| 94 |
+
contextual_summary=result[index][2],
|
| 95 |
+
content=chunk.content,
|
| 96 |
+
page_number=chunk.page_number,
|
| 97 |
+
id_do_processo=int(result[index][0]),
|
| 98 |
+
chunk_id=chunk.chunk_id,
|
| 99 |
+
start_char=chunk.start_char,
|
| 100 |
+
end_char=chunk.end_char,
|
| 101 |
+
context=result[index][1],
|
| 102 |
+
)
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
return lista_chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
async def contextualize_all_chunks(
|
| 108 |
+
self,
|
| 109 |
+
all_PDFs_chunks: List[DocumentChunk],
|
| 110 |
+
response_auxiliar_summary,
|
| 111 |
+
) -> List[ContextualizedChunk]:
|
| 112 |
+
"""Add context to all chunks"""
|
| 113 |
|
| 114 |
+
lista_de_listas_cada_com_20_chunks = [
|
| 115 |
+
all_PDFs_chunks[i : i + 20] for i in range(0, len(all_PDFs_chunks), 20)
|
| 116 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
async with asyncio.TaskGroup() as tg:
|
| 119 |
+
tasks = [
|
| 120 |
+
tg.create_task(
|
| 121 |
+
self.contextualize_uma_lista_de_chunks(
|
| 122 |
+
lista_com_20_chunks,
|
| 123 |
+
response_auxiliar_summary,
|
| 124 |
+
)
|
| 125 |
+
)
|
| 126 |
+
for lista_com_20_chunks in lista_de_listas_cada_com_20_chunks
|
| 127 |
+
]
|
| 128 |
|
| 129 |
+
# contextualized_chunks = [task.result() for task in tasks]
|
| 130 |
+
contextualized_chunks = []
|
| 131 |
+
for task in tasks:
|
| 132 |
+
contextualized_chunks = contextualized_chunks + task.result()
|
| 133 |
|
| 134 |
+
return contextualized_chunks
|
| 135 |
|
| 136 |
|
| 137 |
# Código comentado abaixo é para ler as páginas ao redor da página atual do chunk
|
_utils/gerar_relatorio_modelo_usuario/utils.py
CHANGED
|
@@ -1,5 +1,12 @@
|
|
| 1 |
from typing import List, Tuple
|
| 2 |
from langchain_core.documents import Document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def gerar_resposta_compilada(serializer):
|
|
@@ -69,3 +76,51 @@ def validate_many_chunks_in_one_request(response: str):
|
|
| 69 |
if len(matches) == 0:
|
| 70 |
return False
|
| 71 |
return matches_as_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import List, Tuple
|
| 2 |
from langchain_core.documents import Document
|
| 3 |
+
from langchain_core.messages import HumanMessage
|
| 4 |
+
|
| 5 |
+
from _utils.splitters.Splitter_class import Splitter
|
| 6 |
+
from _utils.LLMs.LLM_class import LLM
|
| 7 |
+
from _utils.gerar_relatorio_modelo_usuario.prompts import (
|
| 8 |
+
create_prompt_auxiliar_do_contextual_prompt,
|
| 9 |
+
)
|
| 10 |
|
| 11 |
|
| 12 |
def gerar_resposta_compilada(serializer):
|
|
|
|
| 76 |
if len(matches) == 0:
|
| 77 |
return False
|
| 78 |
return matches_as_list
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# Esta função gera a resposta que será usada em cada um das requisições de cada chunk
|
| 82 |
+
async def get_response_from_auxiliar_contextual_prompt(full_text_as_array: List[str]):
|
| 83 |
+
full_text = ""
|
| 84 |
+
for x in full_text_as_array:
|
| 85 |
+
full_text += x
|
| 86 |
+
|
| 87 |
+
prompt_auxiliar_summary = create_prompt_auxiliar_do_contextual_prompt(full_text)
|
| 88 |
+
|
| 89 |
+
print("\n\n\nprompt_auxiliar_summary[0:500]: ", prompt_auxiliar_summary[0:500])
|
| 90 |
+
|
| 91 |
+
# Claude comentado pois o limite de tokens estava sendo passado pela requisição e dava erro
|
| 92 |
+
# response_auxiliar_summary = await aclaude_answer(
|
| 93 |
+
# self.claude_client, self.claude_context_model, prompt_auxiliar_summary
|
| 94 |
+
# )
|
| 95 |
+
|
| 96 |
+
llms = LLM()
|
| 97 |
+
response_auxiliar_summary = await llms.googleGemini().ainvoke(
|
| 98 |
+
[HumanMessage(content=prompt_auxiliar_summary)]
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
print(
|
| 102 |
+
"\n\n\n\nresponse_auxiliar_summary.content[0:500]: ",
|
| 103 |
+
response_auxiliar_summary.content[0:500],
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
return response_auxiliar_summary.content
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
async def get_full_text_and_all_PDFs_chunks(
|
| 110 |
+
listaPDFs: List[str],
|
| 111 |
+
splitterObject: Splitter,
|
| 112 |
+
should_use_llama_parse: bool,
|
| 113 |
+
isBubble: bool,
|
| 114 |
+
):
|
| 115 |
+
all_PDFs_chunks = []
|
| 116 |
+
|
| 117 |
+
pages: List[str] = []
|
| 118 |
+
|
| 119 |
+
# Load and process document
|
| 120 |
+
for pdf_path in listaPDFs:
|
| 121 |
+
chunks, pages = await splitterObject.load_and_split_document(
|
| 122 |
+
pdf_path, should_use_llama_parse, isBubble
|
| 123 |
+
)
|
| 124 |
+
all_PDFs_chunks = all_PDFs_chunks + chunks
|
| 125 |
+
|
| 126 |
+
return all_PDFs_chunks, pages
|
_utils/resumo_completo_cursor.py
CHANGED
|
@@ -4,10 +4,13 @@ from _utils.gerar_relatorio_modelo_usuario.EnhancedDocumentSummarizer import (
|
|
| 4 |
EnhancedDocumentSummarizer,
|
| 5 |
)
|
| 6 |
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
get_full_text_and_all_PDFs_chunks,
|
|
|
|
| 9 |
)
|
| 10 |
-
from _utils.gerar_relatorio_modelo_usuario.utils import gerar_resposta_compilada
|
| 11 |
from _utils.models.gerar_relatorio import (
|
| 12 |
RetrievalConfig,
|
| 13 |
)
|
|
@@ -51,6 +54,10 @@ async def get_llm_summary_answer_by_cursor_complete(
|
|
| 51 |
chunk_overlap=serializer["chunk_overlap"],
|
| 52 |
)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
# Initialize enhanced summarizer
|
| 55 |
summarizer = EnhancedDocumentSummarizer(
|
| 56 |
config=config,
|
|
@@ -59,29 +66,35 @@ async def get_llm_summary_answer_by_cursor_complete(
|
|
| 59 |
chunk_size=serializer["chunk_size"],
|
| 60 |
num_k_rerank=serializer["num_k_rerank"],
|
| 61 |
model_cohere_rerank=serializer["model_cohere_rerank"],
|
| 62 |
-
claude_context_model=serializer["claude_context_model"],
|
| 63 |
prompt_auxiliar=serializer["prompt_auxiliar"],
|
| 64 |
gpt_model=serializer["model"],
|
| 65 |
gpt_temperature=serializer["gpt_temperature"],
|
| 66 |
-
# id_modelo_do_usuario=serializer["id_modelo_do_usuario"],
|
| 67 |
prompt_gerar_documento=serializer["prompt_gerar_documento"],
|
| 68 |
reciprocal_rank_fusion=reciprocal_rank_fusion,
|
| 69 |
)
|
| 70 |
|
| 71 |
-
|
| 72 |
listaPDFs, summarizer.splitter, serializer["should_use_llama_parse"], isBubble
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Create enhanced vector store and BM25 index
|
| 82 |
vector_store, bm25, chunk_ids = (
|
| 83 |
summarizer.vector_store.create_enhanced_vector_store(
|
| 84 |
-
|
| 85 |
)
|
| 86 |
)
|
| 87 |
|
|
|
|
| 4 |
EnhancedDocumentSummarizer,
|
| 5 |
)
|
| 6 |
from _utils.gerar_relatorio_modelo_usuario.contextual_retriever import (
|
| 7 |
+
ContextualRetriever,
|
| 8 |
+
)
|
| 9 |
+
from _utils.gerar_relatorio_modelo_usuario.utils import (
|
| 10 |
+
gerar_resposta_compilada,
|
| 11 |
get_full_text_and_all_PDFs_chunks,
|
| 12 |
+
get_response_from_auxiliar_contextual_prompt,
|
| 13 |
)
|
|
|
|
| 14 |
from _utils.models.gerar_relatorio import (
|
| 15 |
RetrievalConfig,
|
| 16 |
)
|
|
|
|
| 54 |
chunk_overlap=serializer["chunk_overlap"],
|
| 55 |
)
|
| 56 |
|
| 57 |
+
contextual_retriever = ContextualRetriever(
|
| 58 |
+
config, serializer["claude_context_model"]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
# Initialize enhanced summarizer
|
| 62 |
summarizer = EnhancedDocumentSummarizer(
|
| 63 |
config=config,
|
|
|
|
| 66 |
chunk_size=serializer["chunk_size"],
|
| 67 |
num_k_rerank=serializer["num_k_rerank"],
|
| 68 |
model_cohere_rerank=serializer["model_cohere_rerank"],
|
|
|
|
| 69 |
prompt_auxiliar=serializer["prompt_auxiliar"],
|
| 70 |
gpt_model=serializer["model"],
|
| 71 |
gpt_temperature=serializer["gpt_temperature"],
|
|
|
|
| 72 |
prompt_gerar_documento=serializer["prompt_gerar_documento"],
|
| 73 |
reciprocal_rank_fusion=reciprocal_rank_fusion,
|
| 74 |
)
|
| 75 |
|
| 76 |
+
all_PDFs_chunks, full_text_as_array = await get_full_text_and_all_PDFs_chunks(
|
| 77 |
listaPDFs, summarizer.splitter, serializer["should_use_llama_parse"], isBubble
|
| 78 |
)
|
| 79 |
|
| 80 |
+
is_contextualized_chunk = serializer["should_have_contextual_chunks"]
|
| 81 |
+
|
| 82 |
+
if is_contextualized_chunk:
|
| 83 |
+
response_auxiliar_summary = await get_response_from_auxiliar_contextual_prompt(
|
| 84 |
+
full_text_as_array
|
| 85 |
)
|
| 86 |
+
|
| 87 |
+
contextualized_chunks = await contextual_retriever.contextualize_all_chunks(
|
| 88 |
+
all_PDFs_chunks, response_auxiliar_summary
|
| 89 |
+
)
|
| 90 |
+
chunks_processados = contextualized_chunks
|
| 91 |
+
else:
|
| 92 |
+
chunks_processados = all_PDFs_chunks
|
| 93 |
|
| 94 |
# Create enhanced vector store and BM25 index
|
| 95 |
vector_store, bm25, chunk_ids = (
|
| 96 |
summarizer.vector_store.create_enhanced_vector_store(
|
| 97 |
+
chunks_processados, is_contextualized_chunk
|
| 98 |
)
|
| 99 |
)
|
| 100 |
|
tests/gerar_relatorio_modelo_usuario/test_contextual_retriever.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class TestContextualRetriever:
|
| 2 |
+
pass
|