File size: 7,964 Bytes
a02aab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from typing import Optional, Tuple

import gradio as gr
import pandas as pd
from pathlib import Path
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import numpy as np

def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    columns = {
        "Rating": "rating",
        "Result": "result",
        "Scores": "scores",
        "Opponent": "opponent",
        "OpponentRating": "opponent_rating",
    }

    if is_tournament:
        columns.update({
            "TournamentStartDate": "tournament_start_date",
            "TournamentEndDate": "tournament_end_date",
            " Touranament": "tournament",
        })
    else:
        columns.update({
            "EventDate": "event_date",
            "LeagueName": "league_name"
        })

    return df.rename(columns=columns)


def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
    if is_tournament:
        df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
        df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
        df["tournament"] = df["tournament"].astype('category')
    else:
        df["event_date"] = pd.to_datetime(df["event_date"])
        df["league_name"] = df["league_name"].astype('string')

    df["rating"] = df["rating"].astype('int')
    df["result"] = df["result"].astype('category')
    df["scores"] = df["scores"].astype('string')
    df["opponent"] = df["opponent"].astype('category')
    df["opponent_rating"] = df["opponent_rating"].astype('int')

    return df


def _check_match_type(match_type: str) -> str:
    allowed_match_types = {"tournament", "league"}
    if match_type not in allowed_match_types:
        raise ValueError(
            f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
    return match_type


def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
    key_name = "tournament" if is_tournament else "event_date"
    return df[key_name].nunique()


def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    plt.title('Matches per competition')
    sns.histplot(df.groupby('tournament' if is_tournament else "event_date").size())
    plt.xlabel('Number of matches in competition')
    return fig


def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    key_name = "tournament" if is_tournament else "league_name"
    wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
    fig = plt.figure()
    wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis("off")
    return fig


def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool):
    fig = plt.figure()
    plt.title('Rating over time')
    sns.lineplot(data=df,
                 x="tournament_end_date" if is_tournament else "event_date",
                 y="rating",
                 marker='.',
                 markersize=10)
    plt.xlabel('Competition date')
    plt.ylabel('Rating')
    return fig


def get_max_int(int_csv_str: str) -> int:
    """Get the max int from an int CSV."""
    ints = [int(i.strip()) for i in int_csv_str.split(',')]
    return max(ints)


def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
    if not is_tournament:
        return None
    return df.loc[[np.argmax(df.scores.apply(get_max_int))]]


def get_opponent_rating_distr_fig(df: pd.DataFrame):
    fig = plt.figure()
    plt.title('Opponent rating distribution')
    sns.histplot(data=df, x="opponent_rating", hue='result')
    plt.xlabel('Opponent rating')
    return fig


def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
    fig, ax = plt.subplots(figsize=(12, 8))
    plt.title(f'Opponent rating distribution over time')
    x_key_name = "tournament_end_date" if is_tournament else "event_date"
    sns.violinplot(data=df,
                   x=df[x_key_name].dt.year,
                   y="opponent_rating",
                   hue="result",
                   split=True,
                   inner='points',
                   cut=1,
                   ax=ax)
    plt.xlabel('Competition year')
    plt.ylabel('Opponent rating')
    return fig


def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
    match_type = _check_match_type(file_path.name.split('_')[0])
    is_tournament = match_type == "tournament"

    df = pd.read_csv(file_path)
    df = _rename_columns(df, is_tournament)
    df = _fix_dtypes(df, is_tournament)

    return df, is_tournament


def usatt_rating_analyzer(file_obj):
    # Load data.
    df, is_tournament = load_match_df(Path(file_obj.name))

    # Create outputs.
    n_competitions_played = get_num_competitions_played(df, is_tournament)
    n_matches_played = len(df)
    matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
    opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
    competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
    rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
    match_with_longest_game = get_match_with_longest_game(df, is_tournament)
    opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
    opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)

    return (n_competitions_played,
            n_matches_played,
            matches_per_competition_fig,
            opponent_name_word_cloud_fig,
            competition_name_word_cloud_fig,
            rating_over_time_fig,
            match_with_longest_game,
            opponent_rating_distr_fig,
            opponent_rating_dist_over_time_fig,
            )


with gr.Blocks() as demo:
    gr.Markdown("""# USATT rating analyzer
    Analyze USA table tennis tournament and league results. 

    ## Downloading match results
    1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth).
    2. Find the *active* player you wish to analyze (e.g.,  [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
    3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
    """)
    with gr.Row():
        with gr.Column():
            input_file = gr.File(label='USATT Results File', file_types=['file'])
            btn = gr.Button("Analyze")

    with gr.Group():
        with gr.Row():
            with gr.Column():
                num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
            with gr.Column():
                num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
        rating_over_time_plot = gr.Plot(show_label=False)
        matches_per_comp_plot = gr.Plot(show_label=False)
        with gr.Row():
            with gr.Column():
                opponent_names_plot = gr.Plot(label="Opponent names")
            with gr.Column():
                comp_names_plot = gr.Plot(label="Competition names")

        match_longest_game_gdf = gr.Dataframe(label="Match with longest game", max_rows=1)
        opponent_rating_dist_plot = gr.Plot(show_label=False)
        opponent_rating_dist_over_time_plot = gr.Plot(show_label=False)

    inputs = [input_file]
    outputs = [
        num_comps_box,
        num_matches_box,
        matches_per_comp_plot,
        opponent_names_plot,
        comp_names_plot,
        rating_over_time_plot,
        match_longest_game_gdf,
        opponent_rating_dist_plot,
        opponent_rating_dist_over_time_plot,
    ]

    btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)

demo.launch()