Commit
·
a02aab5
1
Parent(s):
795aaee
Upload 2 files
Browse files- app.py +226 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from pathlib import Path
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from wordcloud import WordCloud
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
|
12 |
+
columns = {
|
13 |
+
"Rating": "rating",
|
14 |
+
"Result": "result",
|
15 |
+
"Scores": "scores",
|
16 |
+
"Opponent": "opponent",
|
17 |
+
"OpponentRating": "opponent_rating",
|
18 |
+
}
|
19 |
+
|
20 |
+
if is_tournament:
|
21 |
+
columns.update({
|
22 |
+
"TournamentStartDate": "tournament_start_date",
|
23 |
+
"TournamentEndDate": "tournament_end_date",
|
24 |
+
" Touranament": "tournament",
|
25 |
+
})
|
26 |
+
else:
|
27 |
+
columns.update({
|
28 |
+
"EventDate": "event_date",
|
29 |
+
"LeagueName": "league_name"
|
30 |
+
})
|
31 |
+
|
32 |
+
return df.rename(columns=columns)
|
33 |
+
|
34 |
+
|
35 |
+
def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
|
36 |
+
if is_tournament:
|
37 |
+
df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
|
38 |
+
df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
|
39 |
+
df["tournament"] = df["tournament"].astype('category')
|
40 |
+
else:
|
41 |
+
df["event_date"] = pd.to_datetime(df["event_date"])
|
42 |
+
df["league_name"] = df["league_name"].astype('string')
|
43 |
+
|
44 |
+
df["rating"] = df["rating"].astype('int')
|
45 |
+
df["result"] = df["result"].astype('category')
|
46 |
+
df["scores"] = df["scores"].astype('string')
|
47 |
+
df["opponent"] = df["opponent"].astype('category')
|
48 |
+
df["opponent_rating"] = df["opponent_rating"].astype('int')
|
49 |
+
|
50 |
+
return df
|
51 |
+
|
52 |
+
|
53 |
+
def _check_match_type(match_type: str) -> str:
|
54 |
+
allowed_match_types = {"tournament", "league"}
|
55 |
+
if match_type not in allowed_match_types:
|
56 |
+
raise ValueError(
|
57 |
+
f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
|
58 |
+
return match_type
|
59 |
+
|
60 |
+
|
61 |
+
def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
|
62 |
+
key_name = "tournament" if is_tournament else "event_date"
|
63 |
+
return df[key_name].nunique()
|
64 |
+
|
65 |
+
|
66 |
+
def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
|
67 |
+
fig = plt.figure()
|
68 |
+
plt.title('Matches per competition')
|
69 |
+
sns.histplot(df.groupby('tournament' if is_tournament else "event_date").size())
|
70 |
+
plt.xlabel('Number of matches in competition')
|
71 |
+
return fig
|
72 |
+
|
73 |
+
|
74 |
+
def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
|
75 |
+
fig = plt.figure()
|
76 |
+
key_name = "tournament" if is_tournament else "league_name"
|
77 |
+
wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
|
78 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
79 |
+
plt.axis("off")
|
80 |
+
return fig
|
81 |
+
|
82 |
+
|
83 |
+
def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
|
84 |
+
fig = plt.figure()
|
85 |
+
wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
|
86 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
87 |
+
plt.axis("off")
|
88 |
+
return fig
|
89 |
+
|
90 |
+
|
91 |
+
def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool):
|
92 |
+
fig = plt.figure()
|
93 |
+
plt.title('Rating over time')
|
94 |
+
sns.lineplot(data=df,
|
95 |
+
x="tournament_end_date" if is_tournament else "event_date",
|
96 |
+
y="rating",
|
97 |
+
marker='.',
|
98 |
+
markersize=10)
|
99 |
+
plt.xlabel('Competition date')
|
100 |
+
plt.ylabel('Rating')
|
101 |
+
return fig
|
102 |
+
|
103 |
+
|
104 |
+
def get_max_int(int_csv_str: str) -> int:
|
105 |
+
"""Get the max int from an int CSV."""
|
106 |
+
ints = [int(i.strip()) for i in int_csv_str.split(',')]
|
107 |
+
return max(ints)
|
108 |
+
|
109 |
+
|
110 |
+
def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
|
111 |
+
if not is_tournament:
|
112 |
+
return None
|
113 |
+
return df.loc[[np.argmax(df.scores.apply(get_max_int))]]
|
114 |
+
|
115 |
+
|
116 |
+
def get_opponent_rating_distr_fig(df: pd.DataFrame):
|
117 |
+
fig = plt.figure()
|
118 |
+
plt.title('Opponent rating distribution')
|
119 |
+
sns.histplot(data=df, x="opponent_rating", hue='result')
|
120 |
+
plt.xlabel('Opponent rating')
|
121 |
+
return fig
|
122 |
+
|
123 |
+
|
124 |
+
def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
|
125 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
126 |
+
plt.title(f'Opponent rating distribution over time')
|
127 |
+
x_key_name = "tournament_end_date" if is_tournament else "event_date"
|
128 |
+
sns.violinplot(data=df,
|
129 |
+
x=df[x_key_name].dt.year,
|
130 |
+
y="opponent_rating",
|
131 |
+
hue="result",
|
132 |
+
split=True,
|
133 |
+
inner='points',
|
134 |
+
cut=1,
|
135 |
+
ax=ax)
|
136 |
+
plt.xlabel('Competition year')
|
137 |
+
plt.ylabel('Opponent rating')
|
138 |
+
return fig
|
139 |
+
|
140 |
+
|
141 |
+
def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
|
142 |
+
match_type = _check_match_type(file_path.name.split('_')[0])
|
143 |
+
is_tournament = match_type == "tournament"
|
144 |
+
|
145 |
+
df = pd.read_csv(file_path)
|
146 |
+
df = _rename_columns(df, is_tournament)
|
147 |
+
df = _fix_dtypes(df, is_tournament)
|
148 |
+
|
149 |
+
return df, is_tournament
|
150 |
+
|
151 |
+
|
152 |
+
def usatt_rating_analyzer(file_obj):
|
153 |
+
# Load data.
|
154 |
+
df, is_tournament = load_match_df(Path(file_obj.name))
|
155 |
+
|
156 |
+
# Create outputs.
|
157 |
+
n_competitions_played = get_num_competitions_played(df, is_tournament)
|
158 |
+
n_matches_played = len(df)
|
159 |
+
matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
|
160 |
+
opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
|
161 |
+
competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
|
162 |
+
rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
|
163 |
+
match_with_longest_game = get_match_with_longest_game(df, is_tournament)
|
164 |
+
opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
|
165 |
+
opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)
|
166 |
+
|
167 |
+
return (n_competitions_played,
|
168 |
+
n_matches_played,
|
169 |
+
matches_per_competition_fig,
|
170 |
+
opponent_name_word_cloud_fig,
|
171 |
+
competition_name_word_cloud_fig,
|
172 |
+
rating_over_time_fig,
|
173 |
+
match_with_longest_game,
|
174 |
+
opponent_rating_distr_fig,
|
175 |
+
opponent_rating_dist_over_time_fig,
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
with gr.Blocks() as demo:
|
180 |
+
gr.Markdown("""# USATT rating analyzer
|
181 |
+
Analyze USA table tennis tournament and league results.
|
182 |
+
|
183 |
+
## Downloading match results
|
184 |
+
1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth).
|
185 |
+
2. Find the *active* player you wish to analyze (e.g., [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
|
186 |
+
3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
|
187 |
+
""")
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column():
|
190 |
+
input_file = gr.File(label='USATT Results File', file_types=['file'])
|
191 |
+
btn = gr.Button("Analyze")
|
192 |
+
|
193 |
+
with gr.Group():
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
|
197 |
+
with gr.Column():
|
198 |
+
num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
|
199 |
+
rating_over_time_plot = gr.Plot(show_label=False)
|
200 |
+
matches_per_comp_plot = gr.Plot(show_label=False)
|
201 |
+
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
opponent_names_plot = gr.Plot(label="Opponent names")
|
204 |
+
with gr.Column():
|
205 |
+
comp_names_plot = gr.Plot(label="Competition names")
|
206 |
+
|
207 |
+
match_longest_game_gdf = gr.Dataframe(label="Match with longest game", max_rows=1)
|
208 |
+
opponent_rating_dist_plot = gr.Plot(show_label=False)
|
209 |
+
opponent_rating_dist_over_time_plot = gr.Plot(show_label=False)
|
210 |
+
|
211 |
+
inputs = [input_file]
|
212 |
+
outputs = [
|
213 |
+
num_comps_box,
|
214 |
+
num_matches_box,
|
215 |
+
matches_per_comp_plot,
|
216 |
+
opponent_names_plot,
|
217 |
+
comp_names_plot,
|
218 |
+
rating_over_time_plot,
|
219 |
+
match_longest_game_gdf,
|
220 |
+
opponent_rating_dist_plot,
|
221 |
+
opponent_rating_dist_over_time_plot,
|
222 |
+
]
|
223 |
+
|
224 |
+
btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)
|
225 |
+
|
226 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
seaborn
|
3 |
+
matplotlib
|
4 |
+
wordcloud
|
5 |
+
numpy
|