lschlessinger commited on
Commit
a02aab5
·
1 Parent(s): 795aaee

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +226 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple
2
+
3
+ import gradio as gr
4
+ import pandas as pd
5
+ from pathlib import Path
6
+ import seaborn as sns
7
+ import matplotlib.pyplot as plt
8
+ from wordcloud import WordCloud
9
+ import numpy as np
10
+
11
+ def _rename_columns(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
12
+ columns = {
13
+ "Rating": "rating",
14
+ "Result": "result",
15
+ "Scores": "scores",
16
+ "Opponent": "opponent",
17
+ "OpponentRating": "opponent_rating",
18
+ }
19
+
20
+ if is_tournament:
21
+ columns.update({
22
+ "TournamentStartDate": "tournament_start_date",
23
+ "TournamentEndDate": "tournament_end_date",
24
+ " Touranament": "tournament",
25
+ })
26
+ else:
27
+ columns.update({
28
+ "EventDate": "event_date",
29
+ "LeagueName": "league_name"
30
+ })
31
+
32
+ return df.rename(columns=columns)
33
+
34
+
35
+ def _fix_dtypes(df: pd.DataFrame, is_tournament: bool) -> pd.DataFrame:
36
+ if is_tournament:
37
+ df["tournament_start_date"] = pd.to_datetime(df["tournament_start_date"])
38
+ df["tournament_end_date"] = pd.to_datetime(df["tournament_end_date"])
39
+ df["tournament"] = df["tournament"].astype('category')
40
+ else:
41
+ df["event_date"] = pd.to_datetime(df["event_date"])
42
+ df["league_name"] = df["league_name"].astype('string')
43
+
44
+ df["rating"] = df["rating"].astype('int')
45
+ df["result"] = df["result"].astype('category')
46
+ df["scores"] = df["scores"].astype('string')
47
+ df["opponent"] = df["opponent"].astype('category')
48
+ df["opponent_rating"] = df["opponent_rating"].astype('int')
49
+
50
+ return df
51
+
52
+
53
+ def _check_match_type(match_type: str) -> str:
54
+ allowed_match_types = {"tournament", "league"}
55
+ if match_type not in allowed_match_types:
56
+ raise ValueError(
57
+ f"The only supported match types are {allowed_match_types}. Found match type of '{match_type}'.")
58
+ return match_type
59
+
60
+
61
+ def get_num_competitions_played(df: pd.DataFrame, is_tournament: bool) -> int:
62
+ key_name = "tournament" if is_tournament else "event_date"
63
+ return df[key_name].nunique()
64
+
65
+
66
+ def get_matches_per_competition_fig(df: pd.DataFrame, is_tournament: bool):
67
+ fig = plt.figure()
68
+ plt.title('Matches per competition')
69
+ sns.histplot(df.groupby('tournament' if is_tournament else "event_date").size())
70
+ plt.xlabel('Number of matches in competition')
71
+ return fig
72
+
73
+
74
+ def get_competition_name_word_cloud_fig(df: pd.DataFrame, is_tournament: bool):
75
+ fig = plt.figure()
76
+ key_name = "tournament" if is_tournament else "league_name"
77
+ wordcloud = WordCloud().generate(" ".join(df[key_name].values.tolist()))
78
+ plt.imshow(wordcloud, interpolation='bilinear')
79
+ plt.axis("off")
80
+ return fig
81
+
82
+
83
+ def get_opponent_name_word_cloud_fig(df: pd.DataFrame):
84
+ fig = plt.figure()
85
+ wordcloud = WordCloud().generate(" ".join(df.opponent.values.tolist()))
86
+ plt.imshow(wordcloud, interpolation='bilinear')
87
+ plt.axis("off")
88
+ return fig
89
+
90
+
91
+ def get_rating_over_time_fig(df: pd.DataFrame, is_tournament: bool):
92
+ fig = plt.figure()
93
+ plt.title('Rating over time')
94
+ sns.lineplot(data=df,
95
+ x="tournament_end_date" if is_tournament else "event_date",
96
+ y="rating",
97
+ marker='.',
98
+ markersize=10)
99
+ plt.xlabel('Competition date')
100
+ plt.ylabel('Rating')
101
+ return fig
102
+
103
+
104
+ def get_max_int(int_csv_str: str) -> int:
105
+ """Get the max int from an int CSV."""
106
+ ints = [int(i.strip()) for i in int_csv_str.split(',')]
107
+ return max(ints)
108
+
109
+
110
+ def get_match_with_longest_game(df: pd.DataFrame, is_tournament: bool) -> Optional[pd.DataFrame]:
111
+ if not is_tournament:
112
+ return None
113
+ return df.loc[[np.argmax(df.scores.apply(get_max_int))]]
114
+
115
+
116
+ def get_opponent_rating_distr_fig(df: pd.DataFrame):
117
+ fig = plt.figure()
118
+ plt.title('Opponent rating distribution')
119
+ sns.histplot(data=df, x="opponent_rating", hue='result')
120
+ plt.xlabel('Opponent rating')
121
+ return fig
122
+
123
+
124
+ def get_opponent_rating_dist_over_time_fig(df: pd.DataFrame, is_tournament: bool):
125
+ fig, ax = plt.subplots(figsize=(12, 8))
126
+ plt.title(f'Opponent rating distribution over time')
127
+ x_key_name = "tournament_end_date" if is_tournament else "event_date"
128
+ sns.violinplot(data=df,
129
+ x=df[x_key_name].dt.year,
130
+ y="opponent_rating",
131
+ hue="result",
132
+ split=True,
133
+ inner='points',
134
+ cut=1,
135
+ ax=ax)
136
+ plt.xlabel('Competition year')
137
+ plt.ylabel('Opponent rating')
138
+ return fig
139
+
140
+
141
+ def load_match_df(file_path: Path) -> Tuple[pd.DataFrame, bool]:
142
+ match_type = _check_match_type(file_path.name.split('_')[0])
143
+ is_tournament = match_type == "tournament"
144
+
145
+ df = pd.read_csv(file_path)
146
+ df = _rename_columns(df, is_tournament)
147
+ df = _fix_dtypes(df, is_tournament)
148
+
149
+ return df, is_tournament
150
+
151
+
152
+ def usatt_rating_analyzer(file_obj):
153
+ # Load data.
154
+ df, is_tournament = load_match_df(Path(file_obj.name))
155
+
156
+ # Create outputs.
157
+ n_competitions_played = get_num_competitions_played(df, is_tournament)
158
+ n_matches_played = len(df)
159
+ matches_per_competition_fig = get_matches_per_competition_fig(df, is_tournament)
160
+ opponent_name_word_cloud_fig = get_opponent_name_word_cloud_fig(df)
161
+ competition_name_word_cloud_fig = get_competition_name_word_cloud_fig(df, is_tournament)
162
+ rating_over_time_fig = get_rating_over_time_fig(df, is_tournament)
163
+ match_with_longest_game = get_match_with_longest_game(df, is_tournament)
164
+ opponent_rating_distr_fig = get_opponent_rating_distr_fig(df)
165
+ opponent_rating_dist_over_time_fig = get_opponent_rating_dist_over_time_fig(df, is_tournament)
166
+
167
+ return (n_competitions_played,
168
+ n_matches_played,
169
+ matches_per_competition_fig,
170
+ opponent_name_word_cloud_fig,
171
+ competition_name_word_cloud_fig,
172
+ rating_over_time_fig,
173
+ match_with_longest_game,
174
+ opponent_rating_distr_fig,
175
+ opponent_rating_dist_over_time_fig,
176
+ )
177
+
178
+
179
+ with gr.Blocks() as demo:
180
+ gr.Markdown("""# USATT rating analyzer
181
+ Analyze USA table tennis tournament and league results.
182
+
183
+ ## Downloading match results
184
+ 1. Make sure you are [logged in](https://usatt.simplycompete.com/login/auth).
185
+ 2. Find the *active* player you wish to analyze (e.g., [Kanak Jha](https://usatt.simplycompete.com/userAccount/up/3431)).
186
+ 3. Under 'Tournaments' or 'Leagues', click *Download Tournament/League Match History*.
187
+ """)
188
+ with gr.Row():
189
+ with gr.Column():
190
+ input_file = gr.File(label='USATT Results File', file_types=['file'])
191
+ btn = gr.Button("Analyze")
192
+
193
+ with gr.Group():
194
+ with gr.Row():
195
+ with gr.Column():
196
+ num_comps_box = gr.Textbox(lines=1, label="Number of competitions (tournaments/leagues) played")
197
+ with gr.Column():
198
+ num_matches_box = gr.Textbox(lines=1, label="Number of matches played")
199
+ rating_over_time_plot = gr.Plot(show_label=False)
200
+ matches_per_comp_plot = gr.Plot(show_label=False)
201
+ with gr.Row():
202
+ with gr.Column():
203
+ opponent_names_plot = gr.Plot(label="Opponent names")
204
+ with gr.Column():
205
+ comp_names_plot = gr.Plot(label="Competition names")
206
+
207
+ match_longest_game_gdf = gr.Dataframe(label="Match with longest game", max_rows=1)
208
+ opponent_rating_dist_plot = gr.Plot(show_label=False)
209
+ opponent_rating_dist_over_time_plot = gr.Plot(show_label=False)
210
+
211
+ inputs = [input_file]
212
+ outputs = [
213
+ num_comps_box,
214
+ num_matches_box,
215
+ matches_per_comp_plot,
216
+ opponent_names_plot,
217
+ comp_names_plot,
218
+ rating_over_time_plot,
219
+ match_longest_game_gdf,
220
+ opponent_rating_dist_plot,
221
+ opponent_rating_dist_over_time_plot,
222
+ ]
223
+
224
+ btn.click(usatt_rating_analyzer, inputs=inputs, outputs=outputs)
225
+
226
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas
2
+ seaborn
3
+ matplotlib
4
+ wordcloud
5
+ numpy