lorenpe2 commited on
Commit
bdc38d2
·
1 Parent(s): 068cb1a

FEAT: new regression model

Browse files
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import re
3
  import numpy as np
 
4
  import glob
5
  import json
6
  from typing import Dict, List, Tuple, Union
@@ -122,9 +123,14 @@ if "01" in option:
122
  input_tensor = inference_tokenizer.get_item(context=context, actual_sentence=actual_text)
123
  output_model = model(**input_tensor.data).logits
124
 
125
- output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
126
- prop_follow = output_model[0]
127
- prop_not_follow = output_model[1]
 
 
 
 
 
128
 
129
  submitted = st.form_submit_button("Submit")
130
  if submitted:
@@ -165,13 +171,18 @@ if "02" in option or "03" in option or "04" in option or "06" in option:
165
  submitted = st.form_submit_button("Submit")
166
  if submitted:
167
  for idx, datapoint in enumerate(data_for_evaluation):
168
- progres_bar.progress(idx/len(data_for_evaluation), text="Inference")
169
  c, s, human_label = datapoint
170
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=s)
171
  output_model = model(**input_tensor.data).logits
172
- output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
173
- prop_follow = output_model[0]
174
- prop_not_follow = output_model[1]
 
 
 
 
 
175
 
176
  results.append((c, s, human_label, prop_follow, prop_not_follow))
177
  if human_label == "coherent":
@@ -192,15 +203,21 @@ if "05" in option:
192
  data_for_evaluation = get_evaluation_data_from_dialogue(_clean_conversational_line(context).split("\n"))
193
  lines = []
194
  scores = np.zeros(shape=(len(data_for_evaluation), context_size))
195
- for datapoint in data_for_evaluation:
 
196
  for actual_sentence, contexts in datapoint.items():
197
  lines.append(actual_sentence)
198
  for c in contexts:
199
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
200
  output_model = model(**input_tensor.data).logits
201
- output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
202
- prop_follow = output_model[0]
203
- prop_not_follow = output_model[1]
 
 
 
 
 
204
  scores[len(lines) - 1][len(c) - 1] = prop_follow
205
 
206
  aggregated_result = []
@@ -210,8 +227,10 @@ if "05" in option:
210
 
211
  if "07" in option:
212
  from data.example_data import dbc
 
213
  select_conversation = st.selectbox("Which dialogue to evaluate", list(range(len(dbc))), index=0)
214
- context = st.text_area("Insert dialogue here (one turn per line):", value=json.dumps([dbc[int(select_conversation)]]))
 
215
  st.markdown("# Formatted form")
216
  context_json = json.loads(context)
217
  output = ""
@@ -236,9 +255,14 @@ if "07" in option:
236
  for c in contexts:
237
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
238
  output_model = model(**input_tensor.data).logits
239
- output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
240
- prop_follow = output_model[0]
241
- prop_not_follow = output_model[1]
 
 
 
 
 
242
  scores[len(lines) - 1][len(c) - 1] = prop_follow
243
 
244
  for idx, line in enumerate(lines):
 
1
  import os
2
  import re
3
  import numpy as np
4
+ import scipy as sp
5
  import glob
6
  import json
7
  from typing import Dict, List, Tuple, Union
 
123
  input_tensor = inference_tokenizer.get_item(context=context, actual_sentence=actual_text)
124
  output_model = model(**input_tensor.data).logits
125
 
126
+ output_model = output_model.detach().numpy()[0]
127
+ if len(output_model) == 2: # classification
128
+ output_model = sp.special.softmax(output_model, axis=-1)
129
+ prop_follow = output_model[0]
130
+ prop_not_follow = output_model[1]
131
+ elif len(output_model) == 1: # regression
132
+ prop_follow = 1 - output_model[0]
133
+ prop_not_follow = 1 - prop_follow
134
 
135
  submitted = st.form_submit_button("Submit")
136
  if submitted:
 
171
  submitted = st.form_submit_button("Submit")
172
  if submitted:
173
  for idx, datapoint in enumerate(data_for_evaluation):
174
+ progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
175
  c, s, human_label = datapoint
176
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=s)
177
  output_model = model(**input_tensor.data).logits
178
+ output_model = output_model.detach().numpy()[0]
179
+ if len(output_model) == 2: # classification
180
+ output_model = sp.special.softmax(output_model, axis=-1)
181
+ prop_follow = output_model[0]
182
+ prop_not_follow = output_model[1]
183
+ elif len(output_model) == 1: # regression
184
+ prop_follow = 1 - output_model[0]
185
+ prop_not_follow = 1 - prop_follow
186
 
187
  results.append((c, s, human_label, prop_follow, prop_not_follow))
188
  if human_label == "coherent":
 
203
  data_for_evaluation = get_evaluation_data_from_dialogue(_clean_conversational_line(context).split("\n"))
204
  lines = []
205
  scores = np.zeros(shape=(len(data_for_evaluation), context_size))
206
+ for idx, datapoint in enumerate(data_for_evaluation):
207
+ progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
208
  for actual_sentence, contexts in datapoint.items():
209
  lines.append(actual_sentence)
210
  for c in contexts:
211
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
212
  output_model = model(**input_tensor.data).logits
213
+ output_model = output_model.detach().numpy()[0]
214
+ if len(output_model) == 2: # classification
215
+ output_model = sp.special.softmax(output_model, axis=-1)
216
+ prop_follow = output_model[0]
217
+ prop_not_follow = output_model[1]
218
+ elif len(output_model) == 1: # regression
219
+ prop_follow = 1 - output_model[0]
220
+ prop_not_follow = 1 - prop_follow
221
  scores[len(lines) - 1][len(c) - 1] = prop_follow
222
 
223
  aggregated_result = []
 
227
 
228
  if "07" in option:
229
  from data.example_data import dbc
230
+
231
  select_conversation = st.selectbox("Which dialogue to evaluate", list(range(len(dbc))), index=0)
232
+ context = st.text_area("Insert dialogue here (one turn per line):",
233
+ value=json.dumps([dbc[int(select_conversation)]]))
234
  st.markdown("# Formatted form")
235
  context_json = json.loads(context)
236
  output = ""
 
255
  for c in contexts:
256
  input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
257
  output_model = model(**input_tensor.data).logits
258
+ output_model = output_model.detach().numpy()[0]
259
+ if len(output_model) == 2: # classification
260
+ output_model = sp.special.softmax(output_model, axis=-1)
261
+ prop_follow = output_model[0]
262
+ prop_not_follow = output_model[1]
263
+ elif len(output_model) == 1: # regression
264
+ prop_follow = 1 - output_model[0]
265
+ prop_not_follow = 1 - prop_follow
266
  scores[len(lines) - 1][len(c) - 1] = prop_follow
267
 
268
  for idx, line in enumerate(lines):
model/new_version_v3/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/lorenpe2/project/hf_models/bert-base-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "problem_type": "regression",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.30.0.dev0",
30
+ "type_vocab_size": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 30522
33
+ }
model/new_version_v3/info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model": "BERT-REGRESSION",
3
+ "description": "Model trained on subset of DailyDialogue, CommonDialogues, ChitChatDataset, AirDialogue and SODA. Using [unused1] token to divide sentences in context. More info can be found at https://wandb.ai/alquist/next-sentence-prediction/runs/66pz87ta/overview?workspace=user-petr-lorenc"
4
+ }
model/new_version_v3/meta-info.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "args": [],
3
+ "kwargs": {
4
+ "model_package": "transformers",
5
+ "model_class": "AutoModelForSequenceClassification",
6
+ "data_root": "/home/lorenpe2/project/data",
7
+ "data_sources": [],
8
+ "pretrained_model": "bert-base-uncased",
9
+ "tokenizer": "bert-base-uncased",
10
+ "approach": "IGNORE_DUPLICITIES",
11
+ "special_token": "[unused1]",
12
+ "learning_rate": 5e-07,
13
+ "warmup_ratio": 0.1,
14
+ "freeze_prefinetuning": true,
15
+ "prefinenuting_epoch": 10,
16
+ "finetuning_epochs": 75
17
+ },
18
+ "tokenizer_args": {
19
+ "padding": "max_length",
20
+ "max_length_ctx": 256,
21
+ "max_length_res": 40,
22
+ "truncation": "only_first",
23
+ "return_tensors": "np",
24
+ "is_split_into_words": true,
25
+ "approach": "IGNORE_DUPLICITIES",
26
+ "special_token": "[unused1]"
27
+ }
28
+ }
model/new_version_v3/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3abc0ca002886035ddc3b08b66e8931313e3a0f3dbf9866d3b04c25432100e
3
+ size 438004853
model/new_version_v3/special_tokens_map.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[unused1]"
4
+ ],
5
+ "cls_token": "[CLS]",
6
+ "mask_token": "[MASK]",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "unk_token": "[UNK]"
10
+ }
model/new_version_v3/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
model/new_version_v3/tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "strip_accents": null,
10
+ "tokenize_chinese_chars": true,
11
+ "tokenizer_class": "BertTokenizer",
12
+ "unk_token": "[UNK]"
13
+ }
model/new_version_v3/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6e790d899c6f03e1990e4d4ff2bd7e63eead63ed41f89122176b62ddefd330e
3
+ size 4091
model/new_version_v3/vocab.txt ADDED
The diff for this file is too large to render. See raw diff