lorenpe2 commited on
Commit
068cb1a
·
1 Parent(s): e47c863

FEAT: new data source

Browse files
Files changed (2) hide show
  1. app.py +51 -5
  2. data/example_data.py +0 -0
app.py CHANGED
@@ -108,12 +108,13 @@ option = st.selectbox("Choose type of input:",
108
  "03 - JSON (example CA-OOD)",
109
  "04 - JSON (example Elysai)",
110
  "05 - Diagnostic mode",
111
- "06 - JSON (example Elysai - large)"])
 
112
 
113
  progres_bar = st.progress(0.0, text="Inference")
114
 
115
- with st.form("input_text"):
116
- if "01" in option:
117
  context = st.text_area("Insert context here (one turn per line):")
118
  actual_text = st.text_input("Insert current turn:")
119
  context = list(filter(lambda x: len(x.strip()) >= 1, context.split("\n")))
@@ -131,7 +132,9 @@ with st.form("input_text"):
131
  ax.pie([prop_follow, prop_not_follow], labels=["Probability - Follow", "Probability - Not Follow"],
132
  autopct='%1.1f%%')
133
  st.pyplot(fig)
134
- elif "02" in option or "03" in option or "04" in option or "06" in option:
 
 
135
  from data.example_data import ca_ood, elysai, elysai_large
136
 
137
  option: str
@@ -179,7 +182,9 @@ with st.form("input_text"):
179
  df = pandas.DataFrame(results, columns=["Context", "Query", "Human Label", "Probability (follow)",
180
  "Probability (not-follow)"])
181
  st.dataframe(df)
182
- elif "05" in option:
 
 
183
  context_size = 5
184
  context = st.text_area("Insert dialogue here (one turn per line):")
185
  submitted = st.form_submit_button("Submit")
@@ -203,6 +208,47 @@ with st.form("input_text"):
203
  aggregated_result.append([line] + scores[idx].tolist())
204
  st.table(aggregated_result)
205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
  st.markdown("## Description of models:")
207
  for x in sorted(models.values(), key=lambda x: x["model"]):
208
  st.write((str(x["model"] + " - " + x["description"])))
 
108
  "03 - JSON (example CA-OOD)",
109
  "04 - JSON (example Elysai)",
110
  "05 - Diagnostic mode",
111
+ "06 - JSON (example Elysai - large)",
112
+ "07 - Dialogue Breakdown Challenge"])
113
 
114
  progres_bar = st.progress(0.0, text="Inference")
115
 
116
+ if "01" in option:
117
+ with st.form("input_text"):
118
  context = st.text_area("Insert context here (one turn per line):")
119
  actual_text = st.text_input("Insert current turn:")
120
  context = list(filter(lambda x: len(x.strip()) >= 1, context.split("\n")))
 
132
  ax.pie([prop_follow, prop_not_follow], labels=["Probability - Follow", "Probability - Not Follow"],
133
  autopct='%1.1f%%')
134
  st.pyplot(fig)
135
+
136
+ if "02" in option or "03" in option or "04" in option or "06" in option:
137
+ with st.form("input_text"):
138
  from data.example_data import ca_ood, elysai, elysai_large
139
 
140
  option: str
 
182
  df = pandas.DataFrame(results, columns=["Context", "Query", "Human Label", "Probability (follow)",
183
  "Probability (not-follow)"])
184
  st.dataframe(df)
185
+
186
+ if "05" in option:
187
+ with st.form("input_text"):
188
  context_size = 5
189
  context = st.text_area("Insert dialogue here (one turn per line):")
190
  submitted = st.form_submit_button("Submit")
 
208
  aggregated_result.append([line] + scores[idx].tolist())
209
  st.table(aggregated_result)
210
 
211
+ if "07" in option:
212
+ from data.example_data import dbc
213
+ select_conversation = st.selectbox("Which dialogue to evaluate", list(range(len(dbc))), index=0)
214
+ context = st.text_area("Insert dialogue here (one turn per line):", value=json.dumps([dbc[int(select_conversation)]]))
215
+ st.markdown("# Formatted form")
216
+ context_json = json.loads(context)
217
+ output = ""
218
+ for conversation in context_json:
219
+ for utterance in conversation:
220
+ output += " * " + utterance["text"] + "\n"
221
+ output += "## ------------------------ "
222
+ st.markdown(output)
223
+ with st.form("input_text"):
224
+ context_size = 5
225
+ submitted = st.form_submit_button("Submit")
226
+ if submitted:
227
+ aggregated_result = []
228
+ for idx, conversation in enumerate(context_json):
229
+ data_for_evaluation = get_evaluation_data_from_dialogue([x["text"] for x in conversation])
230
+ lines = []
231
+ scores = np.zeros(shape=(len(data_for_evaluation), context_size))
232
+ for datapoint in data_for_evaluation:
233
+ progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
234
+ for actual_sentence, contexts in datapoint.items():
235
+ lines.append(actual_sentence)
236
+ for c in contexts:
237
+ input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
238
+ output_model = model(**input_tensor.data).logits
239
+ output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
240
+ prop_follow = output_model[0]
241
+ prop_not_follow = output_model[1]
242
+ scores[len(lines) - 1][len(c) - 1] = prop_follow
243
+
244
+ for idx, line in enumerate(lines):
245
+ NB = conversation[idx]["NB"]
246
+ PB = conversation[idx]["PB"]
247
+ B = conversation[idx]["B"]
248
+ aggregated_result.append([line] + [f"{NB}/{PB}/{B}"] + scores[idx].tolist())
249
+ aggregated_result.append([["-"] * len(aggregated_result[-1])])
250
+ st.table(aggregated_result)
251
+
252
  st.markdown("## Description of models:")
253
  for x in sorted(models.values(), key=lambda x: x["model"]):
254
  st.write((str(x["model"] + " - " + x["description"])))
data/example_data.py CHANGED
The diff for this file is too large to render. See raw diff