lorenpe2's picture
FEAT: new regression model
bdc38d2
import os
import re
import numpy as np
import scipy as sp
import glob
import json
from typing import Dict, List, Tuple, Union
import torch
import pandas
import streamlit as st
import matplotlib.pyplot as plt
from inference_tokenizer import NextSentencePredictionTokenizer
from models import get_class
def get_model(_model_path):
print(f"Getting model at {_model_path}")
if os.path.isfile(os.path.join(_model_path, "meta-info.json")):
with open(os.path.join(_model_path, "meta-info.json"), "r") as f:
meta_info = json.load(f)
_model_package = meta_info["kwargs"].get("model_package", "transformers")
_model_class = meta_info["kwargs"].get("model_class", "BertForNextSentencePrediction")
else:
raise FileNotFoundError("Model is provided without meta-info.json. Cannot interfere proper configuration!")
model_class = get_class(_model_package, _model_class)
_model = model_class.from_pretrained(_model_path)
_model.eval()
return _model
def get_tokenizer(tokenizer_path):
print(f"Getting tokenizer at {tokenizer_path}")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
if os.path.isfile(os.path.join(tokenizer_path, "meta-info.json")):
with open(os.path.join(tokenizer_path, "meta-info.json"), "r") as f:
meta_info = json.load(f)
tokenizer_args = meta_info["tokenizer_args"]
special_token = meta_info["kwargs"]["special_token"]
else:
raise FileNotFoundError("Tokenizer is provided without meta-info.json. Cannot interfere proper configuration!")
if special_token != " ":
tokenizer.add_special_tokens({"additional_special_tokens": [special_token]})
_inference_tokenizer = NextSentencePredictionTokenizer(tokenizer, **tokenizer_args)
return _inference_tokenizer
models_path = glob.glob("./model/*/info.json")
models = {}
for model_path in models_path:
with open(model_path, "r") as f:
model_data = json.load(f)
model_data["path"] = model_path.replace("info.json", "")
models[model_data["model"]] = model_data
model_name = st.selectbox('Which model do you want to use?',
(x for x in sorted(models.keys())),
index=0)
model_path = models[model_name]["path"]
model = get_model(model_path)
inference_tokenizer = get_tokenizer(model_path)
def get_evaluation_data_from_json(_context: List) -> List[Tuple[List, str, str]]:
output_data = []
for _dict in _context:
_dict: Dict
for source in _dict["answers"].values():
for _t, sentences in source.items():
for sentence in sentences:
output_data.append((_dict["context"], sentence, _t))
return output_data
control_sequence_regex_1 = re.compile(r"#.*? ")
control_sequence_regex_2 = re.compile(r"#.*?\n")
def _clean_conversational_line(_line: str):
_line = _line.replace("Bot: ", "")
_line = _line.replace("User: ", "")
_line = control_sequence_regex_1.sub("", _line)
_line = control_sequence_regex_2.sub("\n", _line)
return _line.strip()
def get_evaluation_data_from_dialogue(_context: List[str]) -> List[Dict]:
output_data = []
_context = list(map(lambda x: x.strip(), _context))
_context = list(filter(lambda x: len(x), _context))
for idx, _line in enumerate(_context):
actual_context = _context[max(0, idx - 5):idx]
gradual_context_dict = {_line: []}
for context_idx in range(len(actual_context)):
gradual_context_dict[_line].append(actual_context[-context_idx:])
output_data.append(gradual_context_dict)
return output_data
option = st.selectbox("Choose type of input:",
["01 - String (one turn per line)",
"02 - JSON (aggregated)",
"03 - JSON (example CA-OOD)",
"04 - JSON (example Elysai)",
"05 - Diagnostic mode",
"06 - JSON (example Elysai - large)",
"07 - Dialogue Breakdown Challenge"])
progres_bar = st.progress(0.0, text="Inference")
if "01" in option:
with st.form("input_text"):
context = st.text_area("Insert context here (one turn per line):")
actual_text = st.text_input("Insert current turn:")
context = list(filter(lambda x: len(x.strip()) >= 1, context.split("\n")))
input_tensor = inference_tokenizer.get_item(context=context, actual_sentence=actual_text)
output_model = model(**input_tensor.data).logits
output_model = output_model.detach().numpy()[0]
if len(output_model) == 2: # classification
output_model = sp.special.softmax(output_model, axis=-1)
prop_follow = output_model[0]
prop_not_follow = output_model[1]
elif len(output_model) == 1: # regression
prop_follow = 1 - output_model[0]
prop_not_follow = 1 - prop_follow
submitted = st.form_submit_button("Submit")
if submitted:
fig, ax = plt.subplots()
ax.pie([prop_follow, prop_not_follow], labels=["Probability - Follow", "Probability - Not Follow"],
autopct='%1.1f%%')
st.pyplot(fig)
if "02" in option or "03" in option or "04" in option or "06" in option:
with st.form("input_text"):
from data.example_data import ca_ood, elysai, elysai_large
option: str
# > Python 3.10
# match option.split("-")[0].strip():
# case "03":
# text = json.dumps(choices[0])
# case "04":
# text = json.dumps(choices[1])
# case _:
# text = ""
option = option.split("-")[0].strip()
text = ""
if option == "03":
text = json.dumps(ca_ood)
elif option == "04":
text = json.dumps(elysai)
elif option == "06":
text = json.dumps(elysai_large)
context = st.text_area("Insert JSON here:", value=str(text))
if "{" in context:
data_for_evaluation = get_evaluation_data_from_json(_context=json.loads(context))
results = []
accuracy = []
submitted = st.form_submit_button("Submit")
if submitted:
for idx, datapoint in enumerate(data_for_evaluation):
progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
c, s, human_label = datapoint
input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=s)
output_model = model(**input_tensor.data).logits
output_model = output_model.detach().numpy()[0]
if len(output_model) == 2: # classification
output_model = sp.special.softmax(output_model, axis=-1)
prop_follow = output_model[0]
prop_not_follow = output_model[1]
elif len(output_model) == 1: # regression
prop_follow = 1 - output_model[0]
prop_not_follow = 1 - prop_follow
results.append((c, s, human_label, prop_follow, prop_not_follow))
if human_label == "coherent":
accuracy.append(int(prop_follow > prop_not_follow))
else:
accuracy.append(int(prop_not_follow > prop_follow))
st.metric(label="Accuracy", value=f"{sum(accuracy) / len(accuracy)} %")
df = pandas.DataFrame(results, columns=["Context", "Query", "Human Label", "Probability (follow)",
"Probability (not-follow)"])
st.dataframe(df)
if "05" in option:
with st.form("input_text"):
context_size = 5
context = st.text_area("Insert dialogue here (one turn per line):")
submitted = st.form_submit_button("Submit")
if submitted:
data_for_evaluation = get_evaluation_data_from_dialogue(_clean_conversational_line(context).split("\n"))
lines = []
scores = np.zeros(shape=(len(data_for_evaluation), context_size))
for idx, datapoint in enumerate(data_for_evaluation):
progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
for actual_sentence, contexts in datapoint.items():
lines.append(actual_sentence)
for c in contexts:
input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
output_model = model(**input_tensor.data).logits
output_model = output_model.detach().numpy()[0]
if len(output_model) == 2: # classification
output_model = sp.special.softmax(output_model, axis=-1)
prop_follow = output_model[0]
prop_not_follow = output_model[1]
elif len(output_model) == 1: # regression
prop_follow = 1 - output_model[0]
prop_not_follow = 1 - prop_follow
scores[len(lines) - 1][len(c) - 1] = prop_follow
aggregated_result = []
for idx, line in enumerate(lines):
aggregated_result.append([line] + scores[idx].tolist())
st.table(aggregated_result)
if "07" in option:
from data.example_data import dbc
select_conversation = st.selectbox("Which dialogue to evaluate", list(range(len(dbc))), index=0)
context = st.text_area("Insert dialogue here (one turn per line):",
value=json.dumps([dbc[int(select_conversation)]]))
st.markdown("# Formatted form")
context_json = json.loads(context)
output = ""
for conversation in context_json:
for utterance in conversation:
output += " * " + utterance["text"] + "\n"
output += "## ------------------------ "
st.markdown(output)
with st.form("input_text"):
context_size = 5
submitted = st.form_submit_button("Submit")
if submitted:
aggregated_result = []
for idx, conversation in enumerate(context_json):
data_for_evaluation = get_evaluation_data_from_dialogue([x["text"] for x in conversation])
lines = []
scores = np.zeros(shape=(len(data_for_evaluation), context_size))
for datapoint in data_for_evaluation:
progres_bar.progress(idx / len(data_for_evaluation), text="Inference")
for actual_sentence, contexts in datapoint.items():
lines.append(actual_sentence)
for c in contexts:
input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
output_model = model(**input_tensor.data).logits
output_model = output_model.detach().numpy()[0]
if len(output_model) == 2: # classification
output_model = sp.special.softmax(output_model, axis=-1)
prop_follow = output_model[0]
prop_not_follow = output_model[1]
elif len(output_model) == 1: # regression
prop_follow = 1 - output_model[0]
prop_not_follow = 1 - prop_follow
scores[len(lines) - 1][len(c) - 1] = prop_follow
for idx, line in enumerate(lines):
NB = conversation[idx]["NB"]
PB = conversation[idx]["PB"]
B = conversation[idx]["B"]
aggregated_result.append([line] + [f"{NB}/{PB}/{B}"] + scores[idx].tolist())
aggregated_result.append([["-"] * len(aggregated_result[-1])])
st.table(aggregated_result)
st.markdown("## Description of models:")
for x in sorted(models.values(), key=lambda x: x["model"]):
st.write((str(x["model"] + " - " + x["description"])))