Spaces:
Runtime error
Runtime error
File size: 8,608 Bytes
c186b27 349d1a2 2b6660e c186b27 6457b4b c186b27 822e1b3 349d1a2 c186b27 822e1b3 76f757a c186b27 822e1b3 c186b27 822e1b3 76f757a 2b6660e c186b27 76f757a 2b6660e c186b27 2b6660e c186b27 2b6660e 822e1b3 c186b27 2b6660e 5585321 c186b27 2b6660e c186b27 349d1a2 5585321 349d1a2 5585321 349d1a2 5585321 349d1a2 5585321 2b6660e 254630f 5585321 76f757a 254630f c186b27 2b6660e c186b27 76f757a 349d1a2 254630f c9566b5 76f757a c9566b5 76f757a c9566b5 76f757a 254630f c186b27 5585321 c186b27 2b6660e c186b27 76f757a c186b27 6457b4b c186b27 2b6660e c186b27 5585321 349d1a2 5585321 349d1a2 5585321 349d1a2 5585321 349d1a2 5585321 2b6660e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import re
import numpy as np
import glob
import json
from typing import Dict, List, Tuple, Union
import torch
import pandas
import streamlit as st
import matplotlib.pyplot as plt
from inference_tokenizer import NextSentencePredictionTokenizer
from models import get_class
def get_model(_model_path):
print(f"Getting model at {_model_path}")
if os.path.isfile(os.path.join(_model_path, "meta-info.json")):
with open(os.path.join(_model_path, "meta-info.json"), "r") as f:
meta_info = json.load(f)
_model_package = meta_info["kwargs"].get("model_package", "transformers")
_model_class = meta_info["kwargs"].get("model_class", "BertForNextSentencePrediction")
else:
raise FileNotFoundError("Model is provided without meta-info.json. Cannot interfere proper configuration!")
model_class = get_class(_model_package, _model_class)
_model = model_class.from_pretrained(_model_path)
_model.eval()
return _model
def get_tokenizer(tokenizer_path):
print(f"Getting tokenizer at {tokenizer_path}")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
if os.path.isfile(os.path.join(tokenizer_path, "meta-info.json")):
with open(os.path.join(tokenizer_path, "meta-info.json"), "r") as f:
meta_info = json.load(f)
tokenizer_args = meta_info["tokenizer_args"]
special_token = meta_info["kwargs"]["special_token"]
else:
raise FileNotFoundError("Tokenizer is provided without meta-info.json. Cannot interfere proper configuration!")
if special_token != " ":
tokenizer.add_special_tokens({"additional_special_tokens": [special_token]})
_inference_tokenizer = NextSentencePredictionTokenizer(tokenizer, **tokenizer_args)
return _inference_tokenizer
models_path = glob.glob("./model/*/info.json")
models = {}
for model_path in models_path:
with open(model_path, "r") as f:
model_data = json.load(f)
model_data["path"] = model_path.replace("info.json", "")
models[model_data["model"]] = model_data
model_name = st.selectbox('Which model do you want to use?',
(x for x in sorted(models.keys())),
index=0)
model_path = models[model_name]["path"]
model = get_model(model_path)
inference_tokenizer = get_tokenizer(model_path)
def get_evaluation_data_from_json(_context: List) -> List[Tuple[List, str, str]]:
output_data = []
for _dict in _context:
_dict: Dict
for source in _dict["answers"].values():
for _t, sentences in source.items():
for sentence in sentences:
output_data.append((_dict["context"], sentence, _t))
return output_data
control_sequence_regex_1 = re.compile(r"#.*? ")
control_sequence_regex_2 = re.compile(r"#.*?\n")
def _clean_conversational_line(_line: str):
_line = _line.replace("Bot: ", "")
_line = _line.replace("User: ", "")
_line = control_sequence_regex_1.sub("", _line)
_line = control_sequence_regex_2.sub("\n", _line)
return _line.strip()
def get_evaluation_data_from_dialogue(_context: List[str]) -> List[Dict]:
output_data = []
_context = list(map(lambda x: x.strip(), _context))
_context = list(filter(lambda x: len(x), _context))
for idx, _line in enumerate(_context):
actual_context = _context[max(0, idx - 5):idx]
gradual_context_dict = {_line: []}
for context_idx in range(len(actual_context)):
gradual_context_dict[_line].append(actual_context[-context_idx:])
output_data.append(gradual_context_dict)
return output_data
option = st.selectbox("Choose type of input:",
["01 - String (one turn per line)",
"02 - JSON (aggregated)",
"03 - JSON (example CA-OOD)",
"04 - JSON (example Elysai)",
"05 - Diagnostic mode",
"06 - JSON (example Elysai - large)"])
progres_bar = st.progress(0.0, text="Inference")
with st.form("input_text"):
if "01" in option:
context = st.text_area("Insert context here (one turn per line):")
actual_text = st.text_input("Insert current turn:")
context = list(filter(lambda x: len(x.strip()) >= 1, context.split("\n")))
input_tensor = inference_tokenizer.get_item(context=context, actual_sentence=actual_text)
output_model = model(**input_tensor.data).logits
output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
prop_follow = output_model[0]
prop_not_follow = output_model[1]
submitted = st.form_submit_button("Submit")
if submitted:
fig, ax = plt.subplots()
ax.pie([prop_follow, prop_not_follow], labels=["Probability - Follow", "Probability - Not Follow"],
autopct='%1.1f%%')
st.pyplot(fig)
elif "02" in option or "03" in option or "04" in option or "06" in option:
from data.example_data import ca_ood, elysai, elysai_large
option: str
# > Python 3.10
# match option.split("-")[0].strip():
# case "03":
# text = json.dumps(choices[0])
# case "04":
# text = json.dumps(choices[1])
# case _:
# text = ""
option = option.split("-")[0].strip()
text = ""
if option == "03":
text = json.dumps(ca_ood)
elif option == "04":
text = json.dumps(elysai)
elif option == "06":
text = json.dumps(elysai_large)
context = st.text_area("Insert JSON here:", value=str(text))
if "{" in context:
data_for_evaluation = get_evaluation_data_from_json(_context=json.loads(context))
results = []
accuracy = []
submitted = st.form_submit_button("Submit")
if submitted:
for idx, datapoint in enumerate(data_for_evaluation):
progres_bar.progress(idx/len(data_for_evaluation), text="Inference")
c, s, human_label = datapoint
input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=s)
output_model = model(**input_tensor.data).logits
output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
prop_follow = output_model[0]
prop_not_follow = output_model[1]
results.append((c, s, human_label, prop_follow, prop_not_follow))
if human_label == "coherent":
accuracy.append(int(prop_follow > prop_not_follow))
else:
accuracy.append(int(prop_not_follow > prop_follow))
st.metric(label="Accuracy", value=f"{sum(accuracy) / len(accuracy)} %")
df = pandas.DataFrame(results, columns=["Context", "Query", "Human Label", "Probability (follow)",
"Probability (not-follow)"])
st.dataframe(df)
elif "05" in option:
context_size = 5
context = st.text_area("Insert dialogue here (one turn per line):")
submitted = st.form_submit_button("Submit")
if submitted:
data_for_evaluation = get_evaluation_data_from_dialogue(_clean_conversational_line(context).split("\n"))
lines = []
scores = np.zeros(shape=(len(data_for_evaluation), context_size))
for datapoint in data_for_evaluation:
for actual_sentence, contexts in datapoint.items():
lines.append(actual_sentence)
for c in contexts:
input_tensor = inference_tokenizer.get_item(context=c, actual_sentence=actual_sentence)
output_model = model(**input_tensor.data).logits
output_model = torch.softmax(output_model, dim=-1).detach().numpy()[0]
prop_follow = output_model[0]
prop_not_follow = output_model[1]
scores[len(lines) - 1][len(c) - 1] = prop_follow
aggregated_result = []
for idx, line in enumerate(lines):
aggregated_result.append([line] + scores[idx].tolist())
st.table(aggregated_result)
st.markdown("## Description of models:")
for x in sorted(models.values(), key=lambda x: x["model"]):
st.write((str(x["model"] + " - " + x["description"])))
|