Spaces:
Runtime error
Runtime error
FEAT: new models, reload model each time when something change (not ideal but it is better than st.cache_resource)
Browse files- app.py +20 -9
- inference_tokenizer.py +3 -4
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/config.json +26 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/info.json +4 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/meta-info.json +1 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/optimizer.pt +3 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/pytorch_model.bin +3 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/special_tokens_map.json +1 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/tokenizer_config.json +1 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/trainer_state.json +1060 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/training_args.bin +3 -0
- model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/vocab.txt +0 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/config.json +26 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/info.json +4 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/meta-info.json +1 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/pytorch_model.bin +3 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/special_tokens_map.json +1 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/tokenizer_config.json +1 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/training_args.bin +3 -0
- model/f1f881389fb38108e623689999ceaaaf398c5e92/vocab.txt +0 -0
- models.py +40 -0
app.py
CHANGED
@@ -8,19 +8,29 @@ import pandas
|
|
8 |
import streamlit as st
|
9 |
import matplotlib.pyplot as plt
|
10 |
|
|
|
11 |
from inference_tokenizer import NextSentencePredictionTokenizer
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
from transformers import BertForNextSentencePrediction
|
17 |
-
_model = BertForNextSentencePrediction.from_pretrained(model_path)
|
18 |
_model.eval()
|
19 |
return _model
|
20 |
|
21 |
|
22 |
-
@st.cache_resource
|
23 |
def get_tokenizer(tokenizer_path):
|
|
|
24 |
from transformers import BertTokenizer
|
25 |
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
|
26 |
if os.path.isfile(os.path.join(tokenizer_path, "meta-info.json")):
|
@@ -33,8 +43,8 @@ def get_tokenizer(tokenizer_path):
|
|
33 |
|
34 |
if special_token != " ":
|
35 |
tokenizer.add_special_tokens({"additional_special_tokens": [special_token]})
|
36 |
-
print(special_token)
|
37 |
-
print(tokenizer_args)
|
38 |
_inference_tokenizer = NextSentencePredictionTokenizer(tokenizer, **tokenizer_args)
|
39 |
return _inference_tokenizer
|
40 |
|
@@ -47,11 +57,12 @@ for model_path in models_path:
|
|
47 |
model_data["path"] = model_path.replace("info.json", "")
|
48 |
models[model_data["model"]] = model_data
|
49 |
|
|
|
50 |
model_name = st.selectbox('Which model do you want to use?',
|
51 |
-
(x for x in sorted(models.keys()))
|
|
|
52 |
|
53 |
model_path = models[model_name]["path"]
|
54 |
-
|
55 |
model = get_model(model_path)
|
56 |
inference_tokenizer = get_tokenizer(model_path)
|
57 |
|
|
|
8 |
import streamlit as st
|
9 |
import matplotlib.pyplot as plt
|
10 |
|
11 |
+
|
12 |
from inference_tokenizer import NextSentencePredictionTokenizer
|
13 |
+
from models import get_class
|
14 |
+
from models import OwnBertForNextSentencePrediction
|
15 |
|
16 |
+
def get_model(_model_path):
|
17 |
+
print(f"Getting model at {_model_path}")
|
18 |
+
if os.path.isfile(os.path.join(_model_path, "meta-info.json")):
|
19 |
+
with open(os.path.join(_model_path, "meta-info.json"), "r") as f:
|
20 |
+
meta_info = json.load(f)
|
21 |
+
_model_package = meta_info["kwargs"].get("model_package", "transformers")
|
22 |
+
_model_class = meta_info["kwargs"].get("model_class", "BertForNextSentencePrediction")
|
23 |
+
else:
|
24 |
+
raise FileNotFoundError("Tokenizer is provided without meta-info.json. Cannot interfere proper configuration!")
|
25 |
|
26 |
+
model_class = get_class(_model_package, _model_class)
|
27 |
+
_model = model_class.from_pretrained(_model_path)
|
|
|
|
|
28 |
_model.eval()
|
29 |
return _model
|
30 |
|
31 |
|
|
|
32 |
def get_tokenizer(tokenizer_path):
|
33 |
+
print(f"Getting tokenizer at {tokenizer_path}")
|
34 |
from transformers import BertTokenizer
|
35 |
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
|
36 |
if os.path.isfile(os.path.join(tokenizer_path, "meta-info.json")):
|
|
|
43 |
|
44 |
if special_token != " ":
|
45 |
tokenizer.add_special_tokens({"additional_special_tokens": [special_token]})
|
46 |
+
# print(special_token)
|
47 |
+
# print(tokenizer_args)
|
48 |
_inference_tokenizer = NextSentencePredictionTokenizer(tokenizer, **tokenizer_args)
|
49 |
return _inference_tokenizer
|
50 |
|
|
|
57 |
model_data["path"] = model_path.replace("info.json", "")
|
58 |
models[model_data["model"]] = model_data
|
59 |
|
60 |
+
|
61 |
model_name = st.selectbox('Which model do you want to use?',
|
62 |
+
(x for x in sorted(models.keys())),
|
63 |
+
index=0)
|
64 |
|
65 |
model_path = models[model_name]["path"]
|
|
|
66 |
model = get_model(model_path)
|
67 |
inference_tokenizer = get_tokenizer(model_path)
|
68 |
|
inference_tokenizer.py
CHANGED
@@ -13,10 +13,9 @@ class NextSentencePredictionTokenizer:
|
|
13 |
self.tokenizer_args["max_length"] = self.max_length_ctx + self.max_length_res
|
14 |
|
15 |
# cleaning
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
del self.tokenizer_args["max_length_res"]
|
20 |
|
21 |
def get_item(self, context: List[str], actual_sentence: str):
|
22 |
context_str = f" {self.special_token} ".join(context) if self.special_token != " " else " ".join(context)
|
|
|
13 |
self.tokenizer_args["max_length"] = self.max_length_ctx + self.max_length_res
|
14 |
|
15 |
# cleaning
|
16 |
+
for key_to_delete in ["special_token", "naive_approach", "max_length_ctx", "max_length_res", "approach"]:
|
17 |
+
if key_to_delete in self.tokenizer_args:
|
18 |
+
del self.tokenizer_args[key_to_delete]
|
|
|
19 |
|
20 |
def get_item(self, context: List[str], actual_sentence: str):
|
21 |
context_str = f" {self.special_token} ".join(context) if self.special_token != " " else " ".join(context)
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"OwnBertForNextSentencePrediction"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.17.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "BERT-NSP-v4",
|
3 |
+
"description": "Model trained on DailyDialogue and CommonDialogues. Using [unused1] token to divide sentences in context. Improved training arguments (warmup, smaller learning rate). Using frozen test set to better compare models and therefore trained longer time (about 60 epochs) More info can be found at https://wandb.ai/alquist/next-sentence-prediction/runs/vzpwetvm/overview?workspace=user-petr-lorenc"
|
4 |
+
}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/meta-info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"args": [], "kwargs": {"model_package": "models", "model_class": "OwnBertForNextSentencePrediction","data_root": "/home/lorenpe2/project/data", "data_sources": [["COMMON_DIALOGUES", "common_dialogues/train.json", "common_dialogues/valid_frozen.json", "common_dialogues/test_frozen.json"], ["DAILY_DIALOGUES", "daily_dialogues/dialogues_text.train.txt", "daily_dialogues/dev_frozen.json", "daily_dialogues/test_frozen.json"]], "pretrained_model": "bert-base-uncased", "tokenizer": "bert-base-uncased", "approach": "IGNORE_DUPLICITIES", "special_token": "[unused1]", "learning_rate": 5e-07, "warmup_ratio": 0.1, "freeze_prefinetuning": true, "prefinenuting_epoch": 10, "finetuning_epochs": 75}, "tokenizer_args": {"padding": "max_length", "max_length_ctx": 256, "max_length_res": 40, "truncation": "only_first", "return_tensors": "np", "is_split_into_words": true, "approach": "IGNORE_DUPLICITIES", "special_token": "[unused1]"}}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:486f1fc1c4302a5332800463f331651de7735bff5034d1e4c75e97f35412d62e
|
3 |
+
size 69074944
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cac4be9fdac90195f60a8ef106ab8f9e382758c3f576a35b52eaea575d4a19a
|
3 |
+
size 438871109
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "additional_special_tokens": ["[unused1]"]}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-uncased", "tokenizer_class": "BertTokenizer"}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/trainer_state.json
ADDED
@@ -0,0 +1,1060 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.3728518784046173,
|
3 |
+
"best_model_checkpoint": "/home/lorenpe2/scratch/dialogue-quality/d1dd8365cbf16ff423f537e2291c61a91c717ed1/checkpoint-10494",
|
4 |
+
"epoch": 65.99478623566215,
|
5 |
+
"global_step": 10494,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.99,
|
12 |
+
"eval_accuracy": 0.7063609467455622,
|
13 |
+
"eval_f1": 0.6026026026026026,
|
14 |
+
"eval_loss": 0.6779443621635437,
|
15 |
+
"eval_precision_following": 0.6355685131195336,
|
16 |
+
"eval_precision_not_following": 0.9318885448916409,
|
17 |
+
"eval_recall_following": 0.9674556213017751,
|
18 |
+
"eval_recall_not_following": 0.4452662721893491,
|
19 |
+
"eval_runtime": 6.4103,
|
20 |
+
"eval_samples_per_second": 1265.468,
|
21 |
+
"eval_steps_per_second": 4.992,
|
22 |
+
"step": 159
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 1.99,
|
26 |
+
"eval_accuracy": 0.76232741617357,
|
27 |
+
"eval_f1": 0.707168894289186,
|
28 |
+
"eval_loss": 0.6727659702301025,
|
29 |
+
"eval_precision_following": 0.6905444126074498,
|
30 |
+
"eval_precision_not_following": 0.9208860759493671,
|
31 |
+
"eval_recall_following": 0.9506903353057199,
|
32 |
+
"eval_recall_not_following": 0.5739644970414202,
|
33 |
+
"eval_runtime": 6.6319,
|
34 |
+
"eval_samples_per_second": 1223.188,
|
35 |
+
"eval_steps_per_second": 4.825,
|
36 |
+
"step": 318
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 2.99,
|
40 |
+
"eval_accuracy": 0.8150887573964497,
|
41 |
+
"eval_f1": 0.7912607848594491,
|
42 |
+
"eval_loss": 0.6655098795890808,
|
43 |
+
"eval_precision_following": 0.7565234845443597,
|
44 |
+
"eval_precision_not_following": 0.9083067092651758,
|
45 |
+
"eval_recall_following": 0.9292406311637081,
|
46 |
+
"eval_recall_not_following": 0.7009368836291914,
|
47 |
+
"eval_runtime": 6.7829,
|
48 |
+
"eval_samples_per_second": 1195.945,
|
49 |
+
"eval_steps_per_second": 4.718,
|
50 |
+
"step": 477
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 3.14,
|
54 |
+
"learning_rate": 2.0955574182732605e-07,
|
55 |
+
"loss": 0.674,
|
56 |
+
"step": 500
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 3.99,
|
60 |
+
"eval_accuracy": 0.8354289940828402,
|
61 |
+
"eval_f1": 0.8217861433720465,
|
62 |
+
"eval_loss": 0.6588814854621887,
|
63 |
+
"eval_precision_following": 0.790891597177678,
|
64 |
+
"eval_precision_not_following": 0.8960698689956332,
|
65 |
+
"eval_recall_following": 0.9119822485207101,
|
66 |
+
"eval_recall_not_following": 0.7588757396449705,
|
67 |
+
"eval_runtime": 6.5136,
|
68 |
+
"eval_samples_per_second": 1245.393,
|
69 |
+
"eval_steps_per_second": 4.913,
|
70 |
+
"step": 636
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 4.99,
|
74 |
+
"eval_accuracy": 0.8497287968441815,
|
75 |
+
"eval_f1": 0.8397949796293863,
|
76 |
+
"eval_loss": 0.6521937251091003,
|
77 |
+
"eval_precision_following": 0.8111427944724721,
|
78 |
+
"eval_precision_not_following": 0.8992400788066423,
|
79 |
+
"eval_recall_following": 0.9117357001972387,
|
80 |
+
"eval_recall_not_following": 0.7877218934911243,
|
81 |
+
"eval_runtime": 6.6185,
|
82 |
+
"eval_samples_per_second": 1225.651,
|
83 |
+
"eval_steps_per_second": 4.835,
|
84 |
+
"step": 795
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 5.99,
|
88 |
+
"eval_accuracy": 0.8574950690335306,
|
89 |
+
"eval_f1": 0.8495183545951575,
|
90 |
+
"eval_loss": 0.6446988582611084,
|
91 |
+
"eval_precision_following": 0.8232278198840838,
|
92 |
+
"eval_precision_not_following": 0.8998896856039713,
|
93 |
+
"eval_recall_following": 0.9105029585798816,
|
94 |
+
"eval_recall_not_following": 0.8044871794871795,
|
95 |
+
"eval_runtime": 7.6742,
|
96 |
+
"eval_samples_per_second": 1057.054,
|
97 |
+
"eval_steps_per_second": 4.17,
|
98 |
+
"step": 954
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 6.29,
|
102 |
+
"learning_rate": 4.191114836546521e-07,
|
103 |
+
"loss": 0.6536,
|
104 |
+
"step": 1000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 6.99,
|
108 |
+
"eval_accuracy": 0.8603303747534516,
|
109 |
+
"eval_f1": 0.8529907875956921,
|
110 |
+
"eval_loss": 0.6363867521286011,
|
111 |
+
"eval_precision_following": 0.8276171262048868,
|
112 |
+
"eval_precision_not_following": 0.9003012873185429,
|
113 |
+
"eval_recall_following": 0.9102564102564102,
|
114 |
+
"eval_recall_not_following": 0.810404339250493,
|
115 |
+
"eval_runtime": 7.6857,
|
116 |
+
"eval_samples_per_second": 1055.464,
|
117 |
+
"eval_steps_per_second": 4.164,
|
118 |
+
"step": 1113
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 7.99,
|
122 |
+
"eval_accuracy": 0.8664940828402367,
|
123 |
+
"eval_f1": 0.860456126787785,
|
124 |
+
"eval_loss": 0.6268088817596436,
|
125 |
+
"eval_precision_following": 0.8373042886317222,
|
126 |
+
"eval_precision_not_following": 0.9012145748987854,
|
127 |
+
"eval_recall_following": 0.9097633136094675,
|
128 |
+
"eval_recall_not_following": 0.8232248520710059,
|
129 |
+
"eval_runtime": 7.454,
|
130 |
+
"eval_samples_per_second": 1088.275,
|
131 |
+
"eval_steps_per_second": 4.293,
|
132 |
+
"step": 1272
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 8.99,
|
136 |
+
"eval_accuracy": 0.8678500986193294,
|
137 |
+
"eval_f1": 0.8618200567156483,
|
138 |
+
"eval_loss": 0.6177182793617249,
|
139 |
+
"eval_precision_following": 0.8383219954648526,
|
140 |
+
"eval_precision_not_following": 0.9030253916801729,
|
141 |
+
"eval_recall_following": 0.9114891518737672,
|
142 |
+
"eval_recall_not_following": 0.8242110453648915,
|
143 |
+
"eval_runtime": 7.6101,
|
144 |
+
"eval_samples_per_second": 1065.946,
|
145 |
+
"eval_steps_per_second": 4.205,
|
146 |
+
"step": 1431
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 9.43,
|
150 |
+
"learning_rate": 4.856969809914275e-07,
|
151 |
+
"loss": 0.6261,
|
152 |
+
"step": 1500
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 9.99,
|
156 |
+
"eval_accuracy": 0.8709319526627219,
|
157 |
+
"eval_f1": 0.8653029718255499,
|
158 |
+
"eval_loss": 0.6082141995429993,
|
159 |
+
"eval_precision_following": 0.842320819112628,
|
160 |
+
"eval_precision_not_following": 0.9047619047619048,
|
161 |
+
"eval_recall_following": 0.9127218934911243,
|
162 |
+
"eval_recall_not_following": 0.8291420118343196,
|
163 |
+
"eval_runtime": 6.5573,
|
164 |
+
"eval_samples_per_second": 1237.093,
|
165 |
+
"eval_steps_per_second": 4.88,
|
166 |
+
"step": 1590
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 10.99,
|
170 |
+
"eval_accuracy": 0.8730276134122288,
|
171 |
+
"eval_f1": 0.8682190378710338,
|
172 |
+
"eval_loss": 0.5987269282341003,
|
173 |
+
"eval_precision_following": 0.84765625,
|
174 |
+
"eval_precision_not_following": 0.9023936170212766,
|
175 |
+
"eval_recall_following": 0.909516765285996,
|
176 |
+
"eval_recall_not_following": 0.8365384615384616,
|
177 |
+
"eval_runtime": 6.5989,
|
178 |
+
"eval_samples_per_second": 1229.295,
|
179 |
+
"eval_steps_per_second": 4.849,
|
180 |
+
"step": 1749
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 11.99,
|
184 |
+
"eval_accuracy": 0.8735207100591716,
|
185 |
+
"eval_f1": 0.8683940482298614,
|
186 |
+
"eval_loss": 0.5899477601051331,
|
187 |
+
"eval_precision_following": 0.846523330283623,
|
188 |
+
"eval_precision_not_following": 0.9050802139037433,
|
189 |
+
"eval_recall_following": 0.9124753451676528,
|
190 |
+
"eval_recall_not_following": 0.8345660749506904,
|
191 |
+
"eval_runtime": 6.3563,
|
192 |
+
"eval_samples_per_second": 1276.22,
|
193 |
+
"eval_steps_per_second": 5.034,
|
194 |
+
"step": 1908
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 12.58,
|
198 |
+
"learning_rate": 4.6240216175922476e-07,
|
199 |
+
"loss": 0.5942,
|
200 |
+
"step": 2000
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 12.99,
|
204 |
+
"eval_accuracy": 0.8745069033530573,
|
205 |
+
"eval_f1": 0.869218910585817,
|
206 |
+
"eval_loss": 0.581299901008606,
|
207 |
+
"eval_precision_following": 0.8464872262773723,
|
208 |
+
"eval_precision_not_following": 0.9074570815450643,
|
209 |
+
"eval_recall_following": 0.9149408284023669,
|
210 |
+
"eval_recall_not_following": 0.8340729783037475,
|
211 |
+
"eval_runtime": 6.309,
|
212 |
+
"eval_samples_per_second": 1285.773,
|
213 |
+
"eval_steps_per_second": 5.072,
|
214 |
+
"step": 2067
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 13.99,
|
218 |
+
"eval_accuracy": 0.8746301775147929,
|
219 |
+
"eval_f1": 0.8694982676761196,
|
220 |
+
"eval_loss": 0.5730020403862,
|
221 |
+
"eval_precision_following": 0.8473142857142857,
|
222 |
+
"eval_precision_not_following": 0.9066095798769066,
|
223 |
+
"eval_recall_following": 0.9139546351084813,
|
224 |
+
"eval_recall_not_following": 0.8353057199211046,
|
225 |
+
"eval_runtime": 6.4991,
|
226 |
+
"eval_samples_per_second": 1248.179,
|
227 |
+
"eval_steps_per_second": 4.924,
|
228 |
+
"step": 2226
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 14.99,
|
232 |
+
"eval_accuracy": 0.8747534516765286,
|
233 |
+
"eval_f1": 0.8692743180648481,
|
234 |
+
"eval_loss": 0.5653589963912964,
|
235 |
+
"eval_precision_following": 0.845768880800728,
|
236 |
+
"eval_precision_not_following": 0.9090419806243273,
|
237 |
+
"eval_recall_following": 0.9166666666666666,
|
238 |
+
"eval_recall_not_following": 0.8328402366863905,
|
239 |
+
"eval_runtime": 6.4333,
|
240 |
+
"eval_samples_per_second": 1260.941,
|
241 |
+
"eval_steps_per_second": 4.974,
|
242 |
+
"step": 2385
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 15.72,
|
246 |
+
"learning_rate": 4.3910734252702195e-07,
|
247 |
+
"loss": 0.564,
|
248 |
+
"step": 2500
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 15.99,
|
252 |
+
"eval_accuracy": 0.8768491124260355,
|
253 |
+
"eval_f1": 0.8722016118715621,
|
254 |
+
"eval_loss": 0.5576348900794983,
|
255 |
+
"eval_precision_following": 0.8512985520569983,
|
256 |
+
"eval_precision_not_following": 0.9064078702472746,
|
257 |
+
"eval_recall_following": 0.9132149901380671,
|
258 |
+
"eval_recall_not_following": 0.840483234714004,
|
259 |
+
"eval_runtime": 6.4791,
|
260 |
+
"eval_samples_per_second": 1252.033,
|
261 |
+
"eval_steps_per_second": 4.939,
|
262 |
+
"step": 2544
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 16.99,
|
266 |
+
"eval_accuracy": 0.8764792899408284,
|
267 |
+
"eval_f1": 0.8712413261372397,
|
268 |
+
"eval_loss": 0.5506843328475952,
|
269 |
+
"eval_precision_following": 0.8481532147742818,
|
270 |
+
"eval_precision_not_following": 0.9098228663446055,
|
271 |
+
"eval_recall_following": 0.9171597633136095,
|
272 |
+
"eval_recall_not_following": 0.8357988165680473,
|
273 |
+
"eval_runtime": 7.9718,
|
274 |
+
"eval_samples_per_second": 1017.585,
|
275 |
+
"eval_steps_per_second": 4.014,
|
276 |
+
"step": 2703
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 17.99,
|
280 |
+
"eval_accuracy": 0.8764792899408284,
|
281 |
+
"eval_f1": 0.8712744090441932,
|
282 |
+
"eval_loss": 0.5431817173957825,
|
283 |
+
"eval_precision_following": 0.8483120437956204,
|
284 |
+
"eval_precision_not_following": 0.9096030042918455,
|
285 |
+
"eval_recall_following": 0.9169132149901381,
|
286 |
+
"eval_recall_not_following": 0.8360453648915187,
|
287 |
+
"eval_runtime": 7.4474,
|
288 |
+
"eval_samples_per_second": 1089.246,
|
289 |
+
"eval_steps_per_second": 4.297,
|
290 |
+
"step": 2862
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 18.86,
|
294 |
+
"learning_rate": 4.158125232948192e-07,
|
295 |
+
"loss": 0.5372,
|
296 |
+
"step": 3000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 18.99,
|
300 |
+
"eval_accuracy": 0.8772189349112426,
|
301 |
+
"eval_f1": 0.8721109399075501,
|
302 |
+
"eval_loss": 0.5359050631523132,
|
303 |
+
"eval_precision_following": 0.8493150684931506,
|
304 |
+
"eval_precision_not_following": 0.909967845659164,
|
305 |
+
"eval_recall_following": 0.9171597633136095,
|
306 |
+
"eval_recall_not_following": 0.8372781065088757,
|
307 |
+
"eval_runtime": 7.5381,
|
308 |
+
"eval_samples_per_second": 1076.128,
|
309 |
+
"eval_steps_per_second": 4.245,
|
310 |
+
"step": 3021
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 19.99,
|
314 |
+
"eval_accuracy": 0.8778353057199211,
|
315 |
+
"eval_f1": 0.8725401929260451,
|
316 |
+
"eval_loss": 0.5289158821105957,
|
317 |
+
"eval_precision_following": 0.8488504438880037,
|
318 |
+
"eval_precision_not_following": 0.9120731379403065,
|
319 |
+
"eval_recall_following": 0.9193786982248521,
|
320 |
+
"eval_recall_not_following": 0.8362919132149902,
|
321 |
+
"eval_runtime": 6.6346,
|
322 |
+
"eval_samples_per_second": 1222.686,
|
323 |
+
"eval_steps_per_second": 4.823,
|
324 |
+
"step": 3180
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 20.99,
|
328 |
+
"eval_accuracy": 0.8789447731755424,
|
329 |
+
"eval_f1": 0.8737139917695474,
|
330 |
+
"eval_loss": 0.5221996307373047,
|
331 |
+
"eval_precision_following": 0.8499544626593807,
|
332 |
+
"eval_precision_not_following": 0.9131720430107527,
|
333 |
+
"eval_recall_following": 0.9203648915187377,
|
334 |
+
"eval_recall_not_following": 0.8375246548323472,
|
335 |
+
"eval_runtime": 6.5308,
|
336 |
+
"eval_samples_per_second": 1242.11,
|
337 |
+
"eval_steps_per_second": 4.9,
|
338 |
+
"step": 3339
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 21.99,
|
342 |
+
"eval_accuracy": 0.8796844181459567,
|
343 |
+
"eval_f1": 0.8742592115434167,
|
344 |
+
"eval_loss": 0.5158143639564514,
|
345 |
+
"eval_precision_following": 0.8495233772128915,
|
346 |
+
"eval_precision_not_following": 0.9155423637344846,
|
347 |
+
"eval_recall_following": 0.9228303747534516,
|
348 |
+
"eval_recall_not_following": 0.8365384615384616,
|
349 |
+
"eval_runtime": 6.3007,
|
350 |
+
"eval_samples_per_second": 1287.474,
|
351 |
+
"eval_steps_per_second": 5.079,
|
352 |
+
"step": 3498
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 22.01,
|
356 |
+
"learning_rate": 3.925177040626165e-07,
|
357 |
+
"loss": 0.5126,
|
358 |
+
"step": 3500
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 22.99,
|
362 |
+
"eval_accuracy": 0.8798076923076923,
|
363 |
+
"eval_f1": 0.8747269690350764,
|
364 |
+
"eval_loss": 0.5094554424285889,
|
365 |
+
"eval_precision_following": 0.8513112884834664,
|
366 |
+
"eval_precision_not_following": 0.9133351220821035,
|
367 |
+
"eval_recall_following": 0.9203648915187377,
|
368 |
+
"eval_recall_not_following": 0.8392504930966469,
|
369 |
+
"eval_runtime": 6.4725,
|
370 |
+
"eval_samples_per_second": 1253.304,
|
371 |
+
"eval_steps_per_second": 4.944,
|
372 |
+
"step": 3657
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 23.99,
|
376 |
+
"eval_accuracy": 0.8793145956607495,
|
377 |
+
"eval_f1": 0.8743744385987424,
|
378 |
+
"eval_loss": 0.5033257603645325,
|
379 |
+
"eval_precision_following": 0.8516571428571429,
|
380 |
+
"eval_precision_not_following": 0.9116938720899117,
|
381 |
+
"eval_recall_following": 0.9186390532544378,
|
382 |
+
"eval_recall_not_following": 0.8399901380670611,
|
383 |
+
"eval_runtime": 6.5235,
|
384 |
+
"eval_samples_per_second": 1243.504,
|
385 |
+
"eval_steps_per_second": 4.905,
|
386 |
+
"step": 3816
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 24.99,
|
390 |
+
"eval_accuracy": 0.8806706114398422,
|
391 |
+
"eval_f1": 0.8757062146892656,
|
392 |
+
"eval_loss": 0.49730098247528076,
|
393 |
+
"eval_precision_following": 0.8525114155251141,
|
394 |
+
"eval_precision_not_following": 0.9137191854233655,
|
395 |
+
"eval_recall_following": 0.9206114398422091,
|
396 |
+
"eval_recall_not_following": 0.8407297830374754,
|
397 |
+
"eval_runtime": 6.4549,
|
398 |
+
"eval_samples_per_second": 1256.725,
|
399 |
+
"eval_steps_per_second": 4.957,
|
400 |
+
"step": 3975
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 25.16,
|
404 |
+
"learning_rate": 3.692228848304137e-07,
|
405 |
+
"loss": 0.4884,
|
406 |
+
"step": 4000
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 25.99,
|
410 |
+
"eval_accuracy": 0.8803007889546351,
|
411 |
+
"eval_f1": 0.8751125401929261,
|
412 |
+
"eval_loss": 0.4917982518672943,
|
413 |
+
"eval_precision_following": 0.8511267926246301,
|
414 |
+
"eval_precision_not_following": 0.9147620328045173,
|
415 |
+
"eval_recall_following": 0.921844181459566,
|
416 |
+
"eval_recall_not_following": 0.8387573964497042,
|
417 |
+
"eval_runtime": 7.4346,
|
418 |
+
"eval_samples_per_second": 1091.112,
|
419 |
+
"eval_steps_per_second": 4.304,
|
420 |
+
"step": 4134
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 26.99,
|
424 |
+
"eval_accuracy": 0.8814102564102564,
|
425 |
+
"eval_f1": 0.8765717218373107,
|
426 |
+
"eval_loss": 0.485965758562088,
|
427 |
+
"eval_precision_following": 0.8536808413351623,
|
428 |
+
"eval_precision_not_following": 0.9138576779026217,
|
429 |
+
"eval_recall_following": 0.9206114398422091,
|
430 |
+
"eval_recall_not_following": 0.8422090729783037,
|
431 |
+
"eval_runtime": 7.8472,
|
432 |
+
"eval_samples_per_second": 1033.747,
|
433 |
+
"eval_steps_per_second": 4.078,
|
434 |
+
"step": 4293
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 27.99,
|
438 |
+
"eval_accuracy": 0.8815335305719921,
|
439 |
+
"eval_f1": 0.8769053413603177,
|
440 |
+
"eval_loss": 0.48036113381385803,
|
441 |
+
"eval_precision_following": 0.8548498050905755,
|
442 |
+
"eval_precision_not_following": 0.9125566515595841,
|
443 |
+
"eval_recall_following": 0.9191321499013807,
|
444 |
+
"eval_recall_not_following": 0.8439349112426036,
|
445 |
+
"eval_runtime": 6.2961,
|
446 |
+
"eval_samples_per_second": 1288.426,
|
447 |
+
"eval_steps_per_second": 5.083,
|
448 |
+
"step": 4452
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 28.3,
|
452 |
+
"learning_rate": 3.4592806559821093e-07,
|
453 |
+
"loss": 0.4673,
|
454 |
+
"step": 4500
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 28.99,
|
458 |
+
"eval_accuracy": 0.8814102564102564,
|
459 |
+
"eval_f1": 0.8765083440308087,
|
460 |
+
"eval_loss": 0.47532862424850464,
|
461 |
+
"eval_precision_following": 0.8533576975788031,
|
462 |
+
"eval_precision_not_following": 0.914301017675415,
|
463 |
+
"eval_recall_following": 0.9211045364891519,
|
464 |
+
"eval_recall_not_following": 0.841715976331361,
|
465 |
+
"eval_runtime": 6.4255,
|
466 |
+
"eval_samples_per_second": 1262.466,
|
467 |
+
"eval_steps_per_second": 4.98,
|
468 |
+
"step": 4611
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 29.99,
|
472 |
+
"eval_accuracy": 0.8810404339250493,
|
473 |
+
"eval_f1": 0.8754356525106493,
|
474 |
+
"eval_loss": 0.47099417448043823,
|
475 |
+
"eval_precision_following": 0.8495815426374124,
|
476 |
+
"eval_precision_not_following": 0.9187212137632078,
|
477 |
+
"eval_recall_following": 0.9260355029585798,
|
478 |
+
"eval_recall_not_following": 0.8360453648915187,
|
479 |
+
"eval_runtime": 6.5611,
|
480 |
+
"eval_samples_per_second": 1236.373,
|
481 |
+
"eval_steps_per_second": 4.877,
|
482 |
+
"step": 4770
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 30.99,
|
486 |
+
"eval_accuracy": 0.8814102564102564,
|
487 |
+
"eval_f1": 0.8758709677419355,
|
488 |
+
"eval_loss": 0.465981125831604,
|
489 |
+
"eval_precision_following": 0.8501584427342689,
|
490 |
+
"eval_precision_not_following": 0.9187872225230103,
|
491 |
+
"eval_recall_following": 0.9260355029585798,
|
492 |
+
"eval_recall_not_following": 0.8367850098619329,
|
493 |
+
"eval_runtime": 6.4473,
|
494 |
+
"eval_samples_per_second": 1258.207,
|
495 |
+
"eval_steps_per_second": 4.963,
|
496 |
+
"step": 4929
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 31.44,
|
500 |
+
"learning_rate": 3.2263324636600817e-07,
|
501 |
+
"loss": 0.4474,
|
502 |
+
"step": 5000
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 31.99,
|
506 |
+
"eval_accuracy": 0.8817800788954635,
|
507 |
+
"eval_f1": 0.8768460254269936,
|
508 |
+
"eval_loss": 0.4605511724948883,
|
509 |
+
"eval_precision_following": 0.853458114585711,
|
510 |
+
"eval_precision_not_following": 0.9150361833288663,
|
511 |
+
"eval_recall_following": 0.921844181459566,
|
512 |
+
"eval_recall_not_following": 0.841715976331361,
|
513 |
+
"eval_runtime": 7.8836,
|
514 |
+
"eval_samples_per_second": 1028.968,
|
515 |
+
"eval_steps_per_second": 4.059,
|
516 |
+
"step": 5088
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 32.99,
|
520 |
+
"eval_accuracy": 0.8826429980276134,
|
521 |
+
"eval_f1": 0.877540519680988,
|
522 |
+
"eval_loss": 0.45592227578163147,
|
523 |
+
"eval_precision_following": 0.8532089212562586,
|
524 |
+
"eval_precision_not_following": 0.9174287251210328,
|
525 |
+
"eval_recall_following": 0.9243096646942801,
|
526 |
+
"eval_recall_not_following": 0.8409763313609467,
|
527 |
+
"eval_runtime": 7.6557,
|
528 |
+
"eval_samples_per_second": 1059.596,
|
529 |
+
"eval_steps_per_second": 4.18,
|
530 |
+
"step": 5247
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 33.99,
|
534 |
+
"eval_accuracy": 0.8832593688362919,
|
535 |
+
"eval_f1": 0.8785118665811418,
|
536 |
+
"eval_loss": 0.45115283131599426,
|
537 |
+
"eval_precision_following": 0.8554767893894352,
|
538 |
+
"eval_precision_not_following": 0.9157528751002942,
|
539 |
+
"eval_recall_following": 0.9223372781065089,
|
540 |
+
"eval_recall_not_following": 0.8441814595660749,
|
541 |
+
"eval_runtime": 6.8753,
|
542 |
+
"eval_samples_per_second": 1179.868,
|
543 |
+
"eval_steps_per_second": 4.654,
|
544 |
+
"step": 5406
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 34.59,
|
548 |
+
"learning_rate": 2.993384271338054e-07,
|
549 |
+
"loss": 0.4292,
|
550 |
+
"step": 5500
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 34.99,
|
554 |
+
"eval_accuracy": 0.8826429980276134,
|
555 |
+
"eval_f1": 0.877351198144808,
|
556 |
+
"eval_loss": 0.4472413659095764,
|
557 |
+
"eval_precision_following": 0.8522469359963686,
|
558 |
+
"eval_precision_not_following": 0.9187803561791689,
|
559 |
+
"eval_recall_following": 0.9257889546351085,
|
560 |
+
"eval_recall_not_following": 0.8394970414201184,
|
561 |
+
"eval_runtime": 7.6512,
|
562 |
+
"eval_samples_per_second": 1060.227,
|
563 |
+
"eval_steps_per_second": 4.182,
|
564 |
+
"step": 5565
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 35.99,
|
568 |
+
"eval_accuracy": 0.8825197238658777,
|
569 |
+
"eval_f1": 0.8775221693869684,
|
570 |
+
"eval_loss": 0.44297003746032715,
|
571 |
+
"eval_precision_following": 0.8536585365853658,
|
572 |
+
"eval_precision_not_following": 0.916510067114094,
|
573 |
+
"eval_recall_following": 0.9233234714003945,
|
574 |
+
"eval_recall_not_following": 0.841715976331361,
|
575 |
+
"eval_runtime": 6.5867,
|
576 |
+
"eval_samples_per_second": 1231.58,
|
577 |
+
"eval_steps_per_second": 4.858,
|
578 |
+
"step": 5724
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 36.99,
|
582 |
+
"eval_accuracy": 0.8827662721893491,
|
583 |
+
"eval_f1": 0.8777163430628777,
|
584 |
+
"eval_loss": 0.4388849139213562,
|
585 |
+
"eval_precision_following": 0.8535641084035527,
|
586 |
+
"eval_precision_not_following": 0.91722655200215,
|
587 |
+
"eval_recall_following": 0.9240631163708086,
|
588 |
+
"eval_recall_not_following": 0.8414694280078896,
|
589 |
+
"eval_runtime": 7.7033,
|
590 |
+
"eval_samples_per_second": 1053.059,
|
591 |
+
"eval_steps_per_second": 4.154,
|
592 |
+
"step": 5883
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 37.73,
|
596 |
+
"learning_rate": 2.760436079016027e-07,
|
597 |
+
"loss": 0.4128,
|
598 |
+
"step": 6000
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 37.99,
|
602 |
+
"eval_accuracy": 0.8819033530571992,
|
603 |
+
"eval_f1": 0.8765145656096932,
|
604 |
+
"eval_loss": 0.4353000819683075,
|
605 |
+
"eval_precision_following": 0.8512471655328798,
|
606 |
+
"eval_precision_not_following": 0.9184224743381956,
|
607 |
+
"eval_recall_following": 0.9255424063116371,
|
608 |
+
"eval_recall_not_following": 0.8382642998027613,
|
609 |
+
"eval_runtime": 7.9842,
|
610 |
+
"eval_samples_per_second": 1016.012,
|
611 |
+
"eval_steps_per_second": 4.008,
|
612 |
+
"step": 6042
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 38.99,
|
616 |
+
"eval_accuracy": 0.8832593688362919,
|
617 |
+
"eval_f1": 0.878324553514069,
|
618 |
+
"eval_loss": 0.4311205744743347,
|
619 |
+
"eval_precision_following": 0.8545039908779931,
|
620 |
+
"eval_precision_not_following": 0.9170914944995975,
|
621 |
+
"eval_recall_following": 0.9238165680473372,
|
622 |
+
"eval_recall_not_following": 0.8427021696252466,
|
623 |
+
"eval_runtime": 7.7705,
|
624 |
+
"eval_samples_per_second": 1043.95,
|
625 |
+
"eval_steps_per_second": 4.118,
|
626 |
+
"step": 6201
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 39.99,
|
630 |
+
"eval_accuracy": 0.8835059171597633,
|
631 |
+
"eval_f1": 0.8785503148695541,
|
632 |
+
"eval_loss": 0.42720890045166016,
|
633 |
+
"eval_precision_following": 0.8545703214041486,
|
634 |
+
"eval_precision_not_following": 0.9175838926174497,
|
635 |
+
"eval_recall_following": 0.9243096646942801,
|
636 |
+
"eval_recall_not_following": 0.8427021696252466,
|
637 |
+
"eval_runtime": 7.4652,
|
638 |
+
"eval_samples_per_second": 1086.638,
|
639 |
+
"eval_steps_per_second": 4.287,
|
640 |
+
"step": 6360
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 40.88,
|
644 |
+
"learning_rate": 2.527487886693999e-07,
|
645 |
+
"loss": 0.3974,
|
646 |
+
"step": 6500
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 40.99,
|
650 |
+
"eval_accuracy": 0.8841222879684418,
|
651 |
+
"eval_f1": 0.8793324775353017,
|
652 |
+
"eval_loss": 0.4234888553619385,
|
653 |
+
"eval_precision_following": 0.8558702603928735,
|
654 |
+
"eval_precision_not_following": 0.9172469201928227,
|
655 |
+
"eval_recall_following": 0.9238165680473372,
|
656 |
+
"eval_recall_not_following": 0.8444280078895463,
|
657 |
+
"eval_runtime": 7.8319,
|
658 |
+
"eval_samples_per_second": 1035.77,
|
659 |
+
"eval_steps_per_second": 4.086,
|
660 |
+
"step": 6519
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 41.99,
|
664 |
+
"eval_accuracy": 0.8828895463510849,
|
665 |
+
"eval_f1": 0.8777977874967842,
|
666 |
+
"eval_loss": 0.42032715678215027,
|
667 |
+
"eval_precision_following": 0.8534365043240782,
|
668 |
+
"eval_precision_not_following": 0.9176976869284562,
|
669 |
+
"eval_recall_following": 0.9245562130177515,
|
670 |
+
"eval_recall_not_following": 0.8412228796844181,
|
671 |
+
"eval_runtime": 6.557,
|
672 |
+
"eval_samples_per_second": 1237.159,
|
673 |
+
"eval_steps_per_second": 4.88,
|
674 |
+
"step": 6678
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 42.99,
|
678 |
+
"eval_accuracy": 0.8838757396449705,
|
679 |
+
"eval_f1": 0.8787956767884715,
|
680 |
+
"eval_loss": 0.41689053177833557,
|
681 |
+
"eval_precision_following": 0.8541856232939036,
|
682 |
+
"eval_precision_not_following": 0.9189989235737352,
|
683 |
+
"eval_recall_following": 0.9257889546351085,
|
684 |
+
"eval_recall_not_following": 0.8419625246548323,
|
685 |
+
"eval_runtime": 6.3499,
|
686 |
+
"eval_samples_per_second": 1277.502,
|
687 |
+
"eval_steps_per_second": 5.039,
|
688 |
+
"step": 6837
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 43.99,
|
692 |
+
"eval_accuracy": 0.8838757396449705,
|
693 |
+
"eval_f1": 0.8789514263685426,
|
694 |
+
"eval_loss": 0.413469135761261,
|
695 |
+
"eval_precision_following": 0.8549931600547196,
|
696 |
+
"eval_precision_not_following": 0.9178743961352657,
|
697 |
+
"eval_recall_following": 0.9245562130177515,
|
698 |
+
"eval_recall_not_following": 0.8431952662721893,
|
699 |
+
"eval_runtime": 6.2083,
|
700 |
+
"eval_samples_per_second": 1306.64,
|
701 |
+
"eval_steps_per_second": 5.154,
|
702 |
+
"step": 6996
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 44.03,
|
706 |
+
"learning_rate": 2.2945396943719717e-07,
|
707 |
+
"loss": 0.3843,
|
708 |
+
"step": 7000
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"epoch": 44.99,
|
712 |
+
"eval_accuracy": 0.883629191321499,
|
713 |
+
"eval_f1": 0.878475798146241,
|
714 |
+
"eval_loss": 0.4109957814216614,
|
715 |
+
"eval_precision_following": 0.8536363636363636,
|
716 |
+
"eval_precision_not_following": 0.9191810344827587,
|
717 |
+
"eval_recall_following": 0.9260355029585798,
|
718 |
+
"eval_recall_not_following": 0.8412228796844181,
|
719 |
+
"eval_runtime": 6.439,
|
720 |
+
"eval_samples_per_second": 1259.826,
|
721 |
+
"eval_steps_per_second": 4.97,
|
722 |
+
"step": 7155
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 45.99,
|
726 |
+
"eval_accuracy": 0.8832593688362919,
|
727 |
+
"eval_f1": 0.877916720381591,
|
728 |
+
"eval_loss": 0.40848881006240845,
|
729 |
+
"eval_precision_following": 0.8524144184992065,
|
730 |
+
"eval_precision_not_following": 0.920021615779519,
|
731 |
+
"eval_recall_following": 0.9270216962524654,
|
732 |
+
"eval_recall_not_following": 0.8394970414201184,
|
733 |
+
"eval_runtime": 6.4019,
|
734 |
+
"eval_samples_per_second": 1267.122,
|
735 |
+
"eval_steps_per_second": 4.999,
|
736 |
+
"step": 7314
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 46.99,
|
740 |
+
"eval_accuracy": 0.8830128205128205,
|
741 |
+
"eval_f1": 0.877973511636878,
|
742 |
+
"eval_loss": 0.405333548784256,
|
743 |
+
"eval_precision_following": 0.8537918469596902,
|
744 |
+
"eval_precision_not_following": 0.917495296963182,
|
745 |
+
"eval_recall_following": 0.9243096646942801,
|
746 |
+
"eval_recall_not_following": 0.841715976331361,
|
747 |
+
"eval_runtime": 6.585,
|
748 |
+
"eval_samples_per_second": 1231.895,
|
749 |
+
"eval_steps_per_second": 4.86,
|
750 |
+
"step": 7473
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 47.17,
|
754 |
+
"learning_rate": 2.061591502049944e-07,
|
755 |
+
"loss": 0.3713,
|
756 |
+
"step": 7500
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 47.99,
|
760 |
+
"eval_accuracy": 0.883629191321499,
|
761 |
+
"eval_f1": 0.8785383427689141,
|
762 |
+
"eval_loss": 0.4025915265083313,
|
763 |
+
"eval_precision_following": 0.8539581437670609,
|
764 |
+
"eval_precision_not_following": 0.918729817007535,
|
765 |
+
"eval_recall_following": 0.9255424063116371,
|
766 |
+
"eval_recall_not_following": 0.841715976331361,
|
767 |
+
"eval_runtime": 6.482,
|
768 |
+
"eval_samples_per_second": 1251.458,
|
769 |
+
"eval_steps_per_second": 4.937,
|
770 |
+
"step": 7632
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 48.99,
|
774 |
+
"eval_accuracy": 0.8842455621301775,
|
775 |
+
"eval_f1": 0.8792593545068792,
|
776 |
+
"eval_loss": 0.39974769949913025,
|
777 |
+
"eval_precision_following": 0.854930539740378,
|
778 |
+
"eval_precision_not_following": 0.9188390217683419,
|
779 |
+
"eval_recall_following": 0.9255424063116371,
|
780 |
+
"eval_recall_not_following": 0.842948717948718,
|
781 |
+
"eval_runtime": 6.8714,
|
782 |
+
"eval_samples_per_second": 1180.552,
|
783 |
+
"eval_steps_per_second": 4.657,
|
784 |
+
"step": 7791
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 49.99,
|
788 |
+
"eval_accuracy": 0.884492110453649,
|
789 |
+
"eval_f1": 0.8796094051137093,
|
790 |
+
"eval_loss": 0.39722564816474915,
|
791 |
+
"eval_precision_following": 0.8556442417331813,
|
792 |
+
"eval_precision_not_following": 0.918433056077274,
|
793 |
+
"eval_recall_following": 0.9250493096646942,
|
794 |
+
"eval_recall_not_following": 0.8439349112426036,
|
795 |
+
"eval_runtime": 6.7422,
|
796 |
+
"eval_samples_per_second": 1203.167,
|
797 |
+
"eval_steps_per_second": 4.746,
|
798 |
+
"step": 7950
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 50.31,
|
802 |
+
"learning_rate": 1.8286433097279163e-07,
|
803 |
+
"loss": 0.3602,
|
804 |
+
"step": 8000
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 50.99,
|
808 |
+
"eval_accuracy": 0.8839990138067061,
|
809 |
+
"eval_f1": 0.879002185932879,
|
810 |
+
"eval_loss": 0.394969642162323,
|
811 |
+
"eval_precision_following": 0.8547028011842405,
|
812 |
+
"eval_precision_not_following": 0.9185702768073098,
|
813 |
+
"eval_recall_following": 0.9252958579881657,
|
814 |
+
"eval_recall_not_following": 0.8427021696252466,
|
815 |
+
"eval_runtime": 6.3463,
|
816 |
+
"eval_samples_per_second": 1278.229,
|
817 |
+
"eval_steps_per_second": 5.042,
|
818 |
+
"step": 8109
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 51.99,
|
822 |
+
"eval_accuracy": 0.8833826429980276,
|
823 |
+
"eval_f1": 0.8781555899021123,
|
824 |
+
"eval_loss": 0.39329206943511963,
|
825 |
+
"eval_precision_following": 0.8530881017257039,
|
826 |
+
"eval_precision_not_following": 0.9193635382955772,
|
827 |
+
"eval_recall_following": 0.9262820512820513,
|
828 |
+
"eval_recall_not_following": 0.840483234714004,
|
829 |
+
"eval_runtime": 6.7431,
|
830 |
+
"eval_samples_per_second": 1203.016,
|
831 |
+
"eval_steps_per_second": 4.746,
|
832 |
+
"step": 8268
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 52.99,
|
836 |
+
"eval_accuracy": 0.8842455621301775,
|
837 |
+
"eval_f1": 0.8791039011201237,
|
838 |
+
"eval_loss": 0.3910701274871826,
|
839 |
+
"eval_precision_following": 0.8541240627130198,
|
840 |
+
"eval_precision_not_following": 0.919967663702506,
|
841 |
+
"eval_recall_following": 0.9267751479289941,
|
842 |
+
"eval_recall_not_following": 0.841715976331361,
|
843 |
+
"eval_runtime": 6.5474,
|
844 |
+
"eval_samples_per_second": 1238.969,
|
845 |
+
"eval_steps_per_second": 4.887,
|
846 |
+
"step": 8427
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 53.46,
|
850 |
+
"learning_rate": 1.5956951174058888e-07,
|
851 |
+
"loss": 0.3507,
|
852 |
+
"step": 8500
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 53.99,
|
856 |
+
"eval_accuracy": 0.8837524654832347,
|
857 |
+
"eval_f1": 0.8784950392990594,
|
858 |
+
"eval_loss": 0.3893094062805176,
|
859 |
+
"eval_precision_following": 0.8531881098252779,
|
860 |
+
"eval_precision_not_following": 0.9201079622132253,
|
861 |
+
"eval_recall_following": 0.9270216962524654,
|
862 |
+
"eval_recall_not_following": 0.840483234714004,
|
863 |
+
"eval_runtime": 6.5965,
|
864 |
+
"eval_samples_per_second": 1229.738,
|
865 |
+
"eval_steps_per_second": 4.851,
|
866 |
+
"step": 8586
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 54.99,
|
870 |
+
"eval_accuracy": 0.8839990138067061,
|
871 |
+
"eval_f1": 0.8786589297227595,
|
872 |
+
"eval_loss": 0.3876223862171173,
|
873 |
+
"eval_precision_following": 0.8529345116700657,
|
874 |
+
"eval_precision_not_following": 0.9210597458772641,
|
875 |
+
"eval_recall_following": 0.928007889546351,
|
876 |
+
"eval_recall_not_following": 0.8399901380670611,
|
877 |
+
"eval_runtime": 6.4132,
|
878 |
+
"eval_samples_per_second": 1264.882,
|
879 |
+
"eval_steps_per_second": 4.99,
|
880 |
+
"step": 8745
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 55.99,
|
884 |
+
"eval_accuracy": 0.8841222879684418,
|
885 |
+
"eval_f1": 0.8789595673448365,
|
886 |
+
"eval_loss": 0.38539403676986694,
|
887 |
+
"eval_precision_following": 0.8539300318037256,
|
888 |
+
"eval_precision_not_following": 0.9199460916442048,
|
889 |
+
"eval_recall_following": 0.9267751479289941,
|
890 |
+
"eval_recall_not_following": 0.8414694280078896,
|
891 |
+
"eval_runtime": 6.2428,
|
892 |
+
"eval_samples_per_second": 1299.421,
|
893 |
+
"eval_steps_per_second": 5.126,
|
894 |
+
"step": 8904
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 56.6,
|
898 |
+
"learning_rate": 1.3627469250838615e-07,
|
899 |
+
"loss": 0.3426,
|
900 |
+
"step": 9000
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 56.99,
|
904 |
+
"eval_accuracy": 0.8842455621301775,
|
905 |
+
"eval_f1": 0.8789480469253578,
|
906 |
+
"eval_loss": 0.38400083780288696,
|
907 |
+
"eval_precision_following": 0.8533212423486738,
|
908 |
+
"eval_precision_not_following": 0.9211024047554714,
|
909 |
+
"eval_recall_following": 0.928007889546351,
|
910 |
+
"eval_recall_not_following": 0.840483234714004,
|
911 |
+
"eval_runtime": 6.3044,
|
912 |
+
"eval_samples_per_second": 1286.728,
|
913 |
+
"eval_steps_per_second": 5.076,
|
914 |
+
"step": 9063
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 57.99,
|
918 |
+
"eval_accuracy": 0.8847386587771203,
|
919 |
+
"eval_f1": 0.8797118229769716,
|
920 |
+
"eval_loss": 0.38182100653648376,
|
921 |
+
"eval_precision_following": 0.8550625711035267,
|
922 |
+
"eval_precision_not_following": 0.9198278181329029,
|
923 |
+
"eval_recall_following": 0.9265285996055227,
|
924 |
+
"eval_recall_not_following": 0.842948717948718,
|
925 |
+
"eval_runtime": 6.3112,
|
926 |
+
"eval_samples_per_second": 1285.343,
|
927 |
+
"eval_steps_per_second": 5.07,
|
928 |
+
"step": 9222
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 58.99,
|
932 |
+
"eval_accuracy": 0.8847386587771203,
|
933 |
+
"eval_f1": 0.8797118229769716,
|
934 |
+
"eval_loss": 0.3803881108760834,
|
935 |
+
"eval_precision_following": 0.8550625711035267,
|
936 |
+
"eval_precision_not_following": 0.9198278181329029,
|
937 |
+
"eval_recall_following": 0.9265285996055227,
|
938 |
+
"eval_recall_not_following": 0.842948717948718,
|
939 |
+
"eval_runtime": 6.8641,
|
940 |
+
"eval_samples_per_second": 1181.797,
|
941 |
+
"eval_steps_per_second": 4.662,
|
942 |
+
"step": 9381
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 59.74,
|
946 |
+
"learning_rate": 1.1297987327618338e-07,
|
947 |
+
"loss": 0.3357,
|
948 |
+
"step": 9500
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 59.99,
|
952 |
+
"eval_accuracy": 0.884492110453649,
|
953 |
+
"eval_f1": 0.8792370150792628,
|
954 |
+
"eval_loss": 0.37948256731033325,
|
955 |
+
"eval_precision_following": 0.8537083238829667,
|
956 |
+
"eval_precision_not_following": 0.9211450175533351,
|
957 |
+
"eval_recall_following": 0.928007889546351,
|
958 |
+
"eval_recall_not_following": 0.8409763313609467,
|
959 |
+
"eval_runtime": 6.5287,
|
960 |
+
"eval_samples_per_second": 1242.519,
|
961 |
+
"eval_steps_per_second": 4.901,
|
962 |
+
"step": 9540
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 60.99,
|
966 |
+
"eval_accuracy": 0.8846153846153846,
|
967 |
+
"eval_f1": 0.8794125225457357,
|
968 |
+
"eval_loss": 0.37801429629325867,
|
969 |
+
"eval_precision_following": 0.85406264185202,
|
970 |
+
"eval_precision_not_following": 0.9209390178089585,
|
971 |
+
"eval_recall_following": 0.9277613412228797,
|
972 |
+
"eval_recall_not_following": 0.8414694280078896,
|
973 |
+
"eval_runtime": 6.9538,
|
974 |
+
"eval_samples_per_second": 1166.564,
|
975 |
+
"eval_steps_per_second": 4.602,
|
976 |
+
"step": 9699
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 61.99,
|
980 |
+
"eval_accuracy": 0.8847386587771203,
|
981 |
+
"eval_f1": 0.8796498905908097,
|
982 |
+
"eval_loss": 0.3765193819999695,
|
983 |
+
"eval_precision_following": 0.8547397135712662,
|
984 |
+
"eval_precision_not_following": 0.9202800969566388,
|
985 |
+
"eval_recall_following": 0.9270216962524654,
|
986 |
+
"eval_recall_not_following": 0.8424556213017751,
|
987 |
+
"eval_runtime": 6.5515,
|
988 |
+
"eval_samples_per_second": 1238.193,
|
989 |
+
"eval_steps_per_second": 4.884,
|
990 |
+
"step": 9858
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 62.89,
|
994 |
+
"learning_rate": 8.968505404398062e-08,
|
995 |
+
"loss": 0.3296,
|
996 |
+
"step": 10000
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 62.99,
|
1000 |
+
"eval_accuracy": 0.8848619329388561,
|
1001 |
+
"eval_f1": 0.8798250128667009,
|
1002 |
+
"eval_loss": 0.375373512506485,
|
1003 |
+
"eval_precision_following": 0.8550955414012739,
|
1004 |
+
"eval_precision_not_following": 0.920075349838536,
|
1005 |
+
"eval_recall_following": 0.9267751479289941,
|
1006 |
+
"eval_recall_not_following": 0.842948717948718,
|
1007 |
+
"eval_runtime": 6.5325,
|
1008 |
+
"eval_samples_per_second": 1241.793,
|
1009 |
+
"eval_steps_per_second": 4.899,
|
1010 |
+
"step": 10017
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 63.99,
|
1014 |
+
"eval_accuracy": 0.8846153846153846,
|
1015 |
+
"eval_f1": 0.8794435857805255,
|
1016 |
+
"eval_loss": 0.37458762526512146,
|
1017 |
+
"eval_precision_following": 0.8542234332425068,
|
1018 |
+
"eval_precision_not_following": 0.9207119741100324,
|
1019 |
+
"eval_recall_following": 0.9275147928994083,
|
1020 |
+
"eval_recall_not_following": 0.841715976331361,
|
1021 |
+
"eval_runtime": 6.8668,
|
1022 |
+
"eval_samples_per_second": 1181.329,
|
1023 |
+
"eval_steps_per_second": 4.66,
|
1024 |
+
"step": 10176
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 64.99,
|
1028 |
+
"eval_accuracy": 0.8848619329388561,
|
1029 |
+
"eval_f1": 0.8797631307929968,
|
1030 |
+
"eval_loss": 0.3735732436180115,
|
1031 |
+
"eval_precision_following": 0.8547727272727272,
|
1032 |
+
"eval_precision_not_following": 0.9205280172413793,
|
1033 |
+
"eval_recall_following": 0.9272682445759369,
|
1034 |
+
"eval_recall_not_following": 0.8424556213017751,
|
1035 |
+
"eval_runtime": 6.3558,
|
1036 |
+
"eval_samples_per_second": 1276.317,
|
1037 |
+
"eval_steps_per_second": 5.035,
|
1038 |
+
"step": 10335
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 65.99,
|
1042 |
+
"eval_accuracy": 0.8846153846153846,
|
1043 |
+
"eval_f1": 0.8794746330157095,
|
1044 |
+
"eval_loss": 0.3728518784046173,
|
1045 |
+
"eval_precision_following": 0.8543843707405725,
|
1046 |
+
"eval_precision_not_following": 0.9204851752021563,
|
1047 |
+
"eval_recall_following": 0.9272682445759369,
|
1048 |
+
"eval_recall_not_following": 0.8419625246548323,
|
1049 |
+
"eval_runtime": 6.6517,
|
1050 |
+
"eval_samples_per_second": 1219.546,
|
1051 |
+
"eval_steps_per_second": 4.811,
|
1052 |
+
"step": 10494
|
1053 |
+
}
|
1054 |
+
],
|
1055 |
+
"max_steps": 11925,
|
1056 |
+
"num_train_epochs": 75,
|
1057 |
+
"total_flos": 2.5032038197959936e+18,
|
1058 |
+
"trial_name": null,
|
1059 |
+
"trial_params": null
|
1060 |
+
}
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ebb1ce7c8b03949d067cec4b43721c54661232c7c0fa141a4776f97f18c7e07
|
3 |
+
size 3195
|
model/d1dd8365cbf16ff423f537e2291c61a91c717ed1/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"OwnBertForNextSentencePrediction"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.17.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/info.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "BERT-NSP-v5",
|
3 |
+
"description": "Model trained on DailyDialogue and CommonDialogues. Using [unused1] token to divide sentences in context. Improved training arguments (warmup, smaller learning rate). Using frozen test set to better compare models and therefore trained longer time (about 60 epochs). The model also have bigger classification head (from one layer liner as classical). More info can be found at https://wandb.ai/alquist/next-sentence-prediction/runs/vzpwetvm/overview?workspace=user-petr-lorenc"
|
4 |
+
}
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/meta-info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"args": [], "kwargs": {"model_package": "models", "model_class": "OwnBertForNextSentencePrediction", "data_root": "/home/lorenpe2/project/data", "data_sources": [["COMMON_DIALOGUES", "common_dialogues/train.json", "common_dialogues/valid_frozen.json", "common_dialogues/test_frozen.json"], ["DAILY_DIALOGUES", "daily_dialogues/dialogues_text.train.txt", "daily_dialogues/dev_frozen.json", "daily_dialogues/test_frozen.json"]], "pretrained_model": "bert-base-uncased", "tokenizer": "bert-base-uncased", "approach": "IGNORE_DUPLICITIES", "special_token": "[unused1]", "learning_rate": 5e-07, "warmup_ratio": 0.1, "freeze_prefinetuning": true, "prefinenuting_epoch": 10, "finetuning_epochs": 75}, "tokenizer_args": {"padding": "max_length", "max_length_ctx": 256, "max_length_res": 40, "truncation": "only_first", "return_tensors": "np", "is_split_into_words": true, "approach": "IGNORE_DUPLICITIES", "special_token": "[unused1]"}}
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3126eae7cab98cc9068a81e6384ba77facfd1e8dd3cfecc983e2609744d3539a
|
3 |
+
size 438871109
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "additional_special_tokens": ["[unused1]"]}
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-uncased", "tokenizer_class": "BertTokenizer"}
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49a0183a62c25be44cbf2f333cf9224204e7fbfe84cd9054d94775d61daa9774
|
3 |
+
size 3195
|
model/f1f881389fb38108e623689999ceaaaf398c5e92/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import transformers
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
def get_class(_model_package, _model_class):
|
7 |
+
mod = __import__(_model_package, fromlist=[_model_class])
|
8 |
+
return getattr(mod, _model_class)
|
9 |
+
|
10 |
+
|
11 |
+
class OwnBertOnlyNSPHead(nn.Module):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__()
|
14 |
+
self.seq_relationship = self._build_layer(config.hidden_size, layer_dimensions=[256, 64])
|
15 |
+
|
16 |
+
def forward(self, pooled_output):
|
17 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
18 |
+
return seq_relationship_score
|
19 |
+
|
20 |
+
def _build_layer(self, init_size, layer_dimensions: List, activation=nn.ReLU()):
|
21 |
+
module_list = []
|
22 |
+
_init_size = init_size
|
23 |
+
for layer_dimension in layer_dimensions:
|
24 |
+
module_list.append(nn.Linear(_init_size, layer_dimension))
|
25 |
+
module_list.append(activation)
|
26 |
+
_init_size = layer_dimension
|
27 |
+
|
28 |
+
module_list.append(nn.Linear(_init_size, 2))
|
29 |
+
return nn.Sequential(*module_list)
|
30 |
+
|
31 |
+
|
32 |
+
class OwnBertForNextSentencePrediction(transformers.BertForNextSentencePrediction):
|
33 |
+
def __init__(self, config):
|
34 |
+
super().__init__(config)
|
35 |
+
|
36 |
+
# reinit cls layer to be more powerful
|
37 |
+
self.cls = OwnBertOnlyNSPHead(config)
|
38 |
+
|
39 |
+
# Initialize weights and apply final processing
|
40 |
+
self.post_init()
|