Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def transcribe(audio_path):
|
|
23 |
|
24 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
25 |
headers = {
|
26 |
-
"Authorization": "Bearer
|
27 |
}
|
28 |
files = {
|
29 |
'file': ('audio.wav', audio_data, 'audio/wav'),
|
@@ -39,24 +39,24 @@ def transcribe(audio_path):
|
|
39 |
if response.status_code == 200:
|
40 |
result = response.json()
|
41 |
transcript = result.get("text", "No transcription available.")
|
42 |
-
return
|
43 |
else:
|
44 |
error_msg = response.json().get("error", {}).get("message", "Unknown error.")
|
45 |
print(f"API Error: {error_msg}")
|
46 |
return create_error_pdf(f"API Error: {error_msg}")
|
47 |
|
48 |
-
def
|
49 |
try:
|
50 |
sentences = sent_tokenize(transcript)
|
51 |
except LookupError:
|
52 |
sentences = custom_sent_tokenize(transcript)
|
53 |
|
54 |
-
# Extract
|
55 |
important_sentences = get_important_sentences(sentences)
|
56 |
|
57 |
-
# Generate
|
58 |
-
long_questions = [f"
|
59 |
-
short_questions = [f"
|
60 |
|
61 |
mcqs = generate_mcqs(important_sentences)
|
62 |
|
@@ -64,10 +64,10 @@ def generate_notes(transcript):
|
|
64 |
return pdf_path
|
65 |
|
66 |
def get_important_sentences(sentences):
|
67 |
-
#
|
68 |
important_sentences = []
|
69 |
for sentence in sentences:
|
70 |
-
#
|
71 |
if len(re.findall(r'\b(NN|VB)\b', sentence)): # Using POS tags to detect nouns/verbs
|
72 |
important_sentences.append(sentence)
|
73 |
return important_sentences[:5] # Limit to top 5 important sentences
|
@@ -75,11 +75,11 @@ def get_important_sentences(sentences):
|
|
75 |
def generate_mcqs(important_sentences):
|
76 |
mcqs = []
|
77 |
for sentence in important_sentences:
|
78 |
-
# Generate MCQs from
|
79 |
-
key_terms = sentence.split() #
|
80 |
-
correct_answer = random.choice(key_terms) #
|
81 |
-
options = [correct_answer] + random.sample(key_terms, 3) #
|
82 |
-
random.shuffle(options) # Shuffle options
|
83 |
mcq = {
|
84 |
"question": f"What is '{correct_answer}' in the context of the sentence?",
|
85 |
"options": options,
|
@@ -91,41 +91,42 @@ def generate_mcqs(important_sentences):
|
|
91 |
def create_pdf(transcript, long_questions, short_questions, mcqs):
|
92 |
pdf = FPDF()
|
93 |
pdf.add_page()
|
94 |
-
|
95 |
pdf.set_font("Arial", "B", 16)
|
96 |
-
pdf.cell(200, 10, "Transcription Notes", ln=True, align="C")
|
97 |
|
98 |
pdf.set_font("Arial", "", 12)
|
99 |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")
|
100 |
|
101 |
-
# Add
|
102 |
pdf.set_font("Arial", "B", 14)
|
103 |
pdf.cell(200, 10, "Long Questions", ln=True)
|
104 |
pdf.set_font("Arial", "", 12)
|
105 |
-
for question in long_questions:
|
106 |
-
pdf.multi_cell(0, 10, f"
|
107 |
|
108 |
-
# Add
|
109 |
pdf.set_font("Arial", "B", 14)
|
110 |
pdf.cell(200, 10, "Short Questions", ln=True)
|
111 |
pdf.set_font("Arial", "", 12)
|
112 |
-
for question in short_questions:
|
113 |
-
pdf.multi_cell(0, 10, f"
|
114 |
|
115 |
-
# Add MCQs
|
116 |
pdf.set_font("Arial", "B", 14)
|
117 |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
|
118 |
pdf.set_font("Arial", "", 12)
|
119 |
-
for mcq in mcqs:
|
120 |
-
pdf.multi_cell(0, 10, f"
|
121 |
for option in mcq["options"]:
|
122 |
pdf.multi_cell(0, 10, f" - {option.encode('latin1', 'replace').decode('latin1')}")
|
123 |
pdf.multi_cell(0, 10, f"Answer: {mcq['answer'].encode('latin1', 'replace').decode('latin1')}\n")
|
124 |
|
|
|
125 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
126 |
pdf.output(temp_pdf.name)
|
127 |
pdf_path = temp_pdf.name
|
128 |
-
|
129 |
return pdf_path
|
130 |
|
131 |
def create_error_pdf(message):
|
@@ -135,18 +136,18 @@ def create_error_pdf(message):
|
|
135 |
pdf.cell(200, 10, "Error Report", ln=True, align="C")
|
136 |
pdf.set_font("Arial", "", 12)
|
137 |
pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1'))
|
138 |
-
|
139 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
140 |
pdf.output(temp_pdf.name)
|
141 |
error_pdf_path = temp_pdf.name
|
142 |
-
|
143 |
return error_pdf_path
|
144 |
|
145 |
iface = gr.Interface(
|
146 |
fn=transcribe,
|
147 |
inputs=gr.Audio(type="filepath"),
|
148 |
-
outputs=gr.File(label="Download
|
149 |
-
title="Voice to Text Converter and
|
150 |
)
|
151 |
|
152 |
iface.launch()
|
|
|
23 |
|
24 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
25 |
headers = {
|
26 |
+
"Authorization": "Bearer YOUR_API_KEY", # Replace with your actual API key
|
27 |
}
|
28 |
files = {
|
29 |
'file': ('audio.wav', audio_data, 'audio/wav'),
|
|
|
39 |
if response.status_code == 200:
|
40 |
result = response.json()
|
41 |
transcript = result.get("text", "No transcription available.")
|
42 |
+
return generate_exam_paper(transcript)
|
43 |
else:
|
44 |
error_msg = response.json().get("error", {}).get("message", "Unknown error.")
|
45 |
print(f"API Error: {error_msg}")
|
46 |
return create_error_pdf(f"API Error: {error_msg}")
|
47 |
|
48 |
+
def generate_exam_paper(transcript):
|
49 |
try:
|
50 |
sentences = sent_tokenize(transcript)
|
51 |
except LookupError:
|
52 |
sentences = custom_sent_tokenize(transcript)
|
53 |
|
54 |
+
# Extract important sentences for generating questions
|
55 |
important_sentences = get_important_sentences(sentences)
|
56 |
|
57 |
+
# Generate exam-like questions
|
58 |
+
long_questions = [f"Explain the historical significance of '{sentence}'?" for sentence in important_sentences[:5]]
|
59 |
+
short_questions = [f"What is the definition of '{sentence.split()[0]}'?" for sentence in important_sentences[:5]]
|
60 |
|
61 |
mcqs = generate_mcqs(important_sentences)
|
62 |
|
|
|
64 |
return pdf_path
|
65 |
|
66 |
def get_important_sentences(sentences):
|
67 |
+
# Focus on sentences that are likely to contain key information (like facts or definitions)
|
68 |
important_sentences = []
|
69 |
for sentence in sentences:
|
70 |
+
# Simplified heuristic: sentences with important nouns/verbs
|
71 |
if len(re.findall(r'\b(NN|VB)\b', sentence)): # Using POS tags to detect nouns/verbs
|
72 |
important_sentences.append(sentence)
|
73 |
return important_sentences[:5] # Limit to top 5 important sentences
|
|
|
75 |
def generate_mcqs(important_sentences):
|
76 |
mcqs = []
|
77 |
for sentence in important_sentences:
|
78 |
+
# Generate MCQs from the sentence context
|
79 |
+
key_terms = sentence.split() # Simple tokenization
|
80 |
+
correct_answer = random.choice(key_terms) # Select a key term as the answer
|
81 |
+
options = [correct_answer] + random.sample(key_terms, 3) # Select distractors from the sentence
|
82 |
+
random.shuffle(options) # Shuffle the options
|
83 |
mcq = {
|
84 |
"question": f"What is '{correct_answer}' in the context of the sentence?",
|
85 |
"options": options,
|
|
|
91 |
def create_pdf(transcript, long_questions, short_questions, mcqs):
|
92 |
pdf = FPDF()
|
93 |
pdf.add_page()
|
94 |
+
|
95 |
pdf.set_font("Arial", "B", 16)
|
96 |
+
pdf.cell(200, 10, "Exam Paper: Transcription Notes", ln=True, align="C")
|
97 |
|
98 |
pdf.set_font("Arial", "", 12)
|
99 |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")
|
100 |
|
101 |
+
# Add Long Questions Section
|
102 |
pdf.set_font("Arial", "B", 14)
|
103 |
pdf.cell(200, 10, "Long Questions", ln=True)
|
104 |
pdf.set_font("Arial", "", 12)
|
105 |
+
for i, question in enumerate(long_questions, 1):
|
106 |
+
pdf.multi_cell(0, 10, f"{i}. {question.encode('latin1', 'replace').decode('latin1')}\n")
|
107 |
|
108 |
+
# Add Short Questions Section
|
109 |
pdf.set_font("Arial", "B", 14)
|
110 |
pdf.cell(200, 10, "Short Questions", ln=True)
|
111 |
pdf.set_font("Arial", "", 12)
|
112 |
+
for i, question in enumerate(short_questions, 1):
|
113 |
+
pdf.multi_cell(0, 10, f"{i}. {question.encode('latin1', 'replace').decode('latin1')}\n")
|
114 |
|
115 |
+
# Add MCQs Section
|
116 |
pdf.set_font("Arial", "B", 14)
|
117 |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
|
118 |
pdf.set_font("Arial", "", 12)
|
119 |
+
for i, mcq in enumerate(mcqs, 1):
|
120 |
+
pdf.multi_cell(0, 10, f"{i}. {mcq['question'].encode('latin1', 'replace').decode('latin1')}")
|
121 |
for option in mcq["options"]:
|
122 |
pdf.multi_cell(0, 10, f" - {option.encode('latin1', 'replace').decode('latin1')}")
|
123 |
pdf.multi_cell(0, 10, f"Answer: {mcq['answer'].encode('latin1', 'replace').decode('latin1')}\n")
|
124 |
|
125 |
+
# Save the generated PDF to a temporary file
|
126 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
127 |
pdf.output(temp_pdf.name)
|
128 |
pdf_path = temp_pdf.name
|
129 |
+
|
130 |
return pdf_path
|
131 |
|
132 |
def create_error_pdf(message):
|
|
|
136 |
pdf.cell(200, 10, "Error Report", ln=True, align="C")
|
137 |
pdf.set_font("Arial", "", 12)
|
138 |
pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1'))
|
139 |
+
|
140 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
141 |
pdf.output(temp_pdf.name)
|
142 |
error_pdf_path = temp_pdf.name
|
143 |
+
|
144 |
return error_pdf_path
|
145 |
|
146 |
iface = gr.Interface(
|
147 |
fn=transcribe,
|
148 |
inputs=gr.Audio(type="filepath"),
|
149 |
+
outputs=gr.File(label="Download Exam Paper (PDF)"),
|
150 |
+
title="Voice to Text Converter and Exam Paper Generator",
|
151 |
)
|
152 |
|
153 |
iface.launch()
|