Spaces:
Running
Running
File size: 4,112 Bytes
309b067 ae43f08 042bc75 309b067 1bcb7e9 93cef8c 1bcb7e9 f3f5ab6 93cef8c f3f5ab6 ae43f08 bbee055 a78e93c 1bcb7e9 a78e93c f3f5ab6 042bc75 ae43f08 0fe9a40 1bcb7e9 a78e93c 1bcb7e9 ae43f08 1bcb7e9 ae43f08 f3f5ab6 1bcb7e9 bbee055 85eb5ef 042bc75 bbee055 042bc75 bbee055 1bcb7e9 bbee055 309b067 bbee055 042bc75 bbee055 042bc75 309b067 042bc75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import requests
from fpdf import FPDF
import nltk
from nltk.tokenize import sent_tokenize
import random
import os
# Ensure nltk resources are downloaded
nltk.download("punkt")
# Function to send audio to Groq API and get transcription
def transcribe(audio_path):
# Read audio file in binary mode
with open(audio_path, "rb") as audio_file:
audio_data = audio_file.read()
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
headers = {
"Authorization": "Bearer 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", # Replace with your actual API key
}
files = {
'file': ('audio.wav', audio_data, 'audio/wav'),
}
data = {
'model': 'whisper-large-v3-turbo',
'response_format': 'json',
'language': 'en',
}
# Send audio to Groq API
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)
if response.status_code == 200:
result = response.json()
transcript = result.get("text", "No transcription available.")
return generate_notes(transcript)
else:
error_msg = response.json().get("error", {}).get("message", "Unknown error.")
print(f"API Error: {error_msg}")
return create_error_pdf(f"API Error: {error_msg}")
# Function to generate notes and questions
def generate_notes(transcript):
# Split transcript into sentences
sentences = sent_tokenize(transcript)
# Generate long and short questions
long_questions = [f"What is meant by '{sentence}'?" for sentence in sentences[:5]]
short_questions = [f"Define '{sentence.split()[0]}'." for sentence in sentences[:5]]
# Generate MCQs
mcqs = []
for sentence in sentences[:5]:
mcq = {
"question": f"What is '{sentence.split()[0]}'?",
"options": [sentence.split()[0]] + random.sample(["Option 1", "Option 2", "Option 3"], 3),
"answer": sentence.split()[0]
}
mcqs.append(mcq)
# Create PDF
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
return pdf_path
# Function to create a PDF for transcription and questions
def create_pdf(transcript, long_questions, short_questions, mcqs):
pdf = FPDF()
pdf.add_page()
# Title
pdf.set_font("Arial", "B", 16)
pdf.cell(200, 10, "Transcription Notes", ln=True, align="C")
# Transcription
pdf.set_font("Arial", "", 12)
pdf.multi_cell(0, 10, f"Transcription:\n{transcript}\n\n")
# Long Questions
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Long Questions", ln=True)
pdf.set_font("Arial", "", 12)
for question in long_questions:
pdf.multi_cell(0, 10, f"- {question}\n")
# Short Questions
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Short Questions", ln=True)
pdf.set_font("Arial", "", 12)
for question in short_questions:
pdf.multi_cell(0, 10, f"- {question}\n")
# MCQs
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
pdf.set_font("Arial", "", 12)
for mcq in mcqs:
pdf.multi_cell(0, 10, f"Q: {mcq['question']}")
for option in mcq["options"]:
pdf.multi_cell(0, 10, f" - {option}")
pdf.multi_cell(0, 10, f"Answer: {mcq['answer']}\n")
# Save PDF
pdf_path = "/mnt/data/transcription_notes.pdf"
pdf.output(pdf_path)
return pdf_path
# Function to create an error PDF
def create_error_pdf(message):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(200, 10, "Error Report", ln=True, align="C")
pdf.set_font("Arial", "", 12)
pdf.multi_cell(0, 10, message)
error_pdf_path = "/mnt/data/error_report.pdf"
pdf.output(error_pdf_path)
return error_pdf_path
# Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs=gr.File(label="Download PDF with Notes or Error Report"),
title="Voice to Text Converter and Notes Generator",
)
iface.launch()
|