File size: 3,960 Bytes
309b067
ae43f08
042bc75
 
427442a
042bc75
 
 
427442a
 
 
 
 
 
 
 
 
309b067
1bcb7e9
93cef8c
f3f5ab6
 
93cef8c
f3f5ab6
ae43f08
bbee055
a78e93c
1bcb7e9
 
 
a78e93c
f3f5ab6
042bc75
 
ae43f08
0fe9a40
a78e93c
1bcb7e9
ae43f08
 
1bcb7e9
 
ae43f08
f3f5ab6
1bcb7e9
bbee055
85eb5ef
042bc75
427442a
 
 
 
042bc75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbee055
 
 
 
 
 
 
 
 
 
 
1bcb7e9
309b067
bbee055
042bc75
bbee055
042bc75
309b067
 
042bc75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import requests
from fpdf import FPDF
import nltk
import os
from nltk.tokenize import sent_tokenize
import random

# Attempt to download punkt tokenizer
try:
    nltk.download("punkt")
except:
    print("NLTK punkt tokenizer download failed. Using custom tokenizer.")

# Custom fallback for sentence tokenization
def custom_sent_tokenize(text):
    return text.split(". ")

# Function to send audio to Groq API and get transcription
def transcribe(audio_path):
    with open(audio_path, "rb") as audio_file:
        audio_data = audio_file.read()

    groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
    headers = {
        "Authorization": "Bearer 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",  # Replace with your actual API key
    }
    files = {
        'file': ('audio.wav', audio_data, 'audio/wav'),
    }
    data = {
        'model': 'whisper-large-v3-turbo',
        'response_format': 'json',
        'language': 'en',
    }

    response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)

    if response.status_code == 200:
        result = response.json()
        transcript = result.get("text", "No transcription available.")
        return generate_notes(transcript)
    else:
        error_msg = response.json().get("error", {}).get("message", "Unknown error.")
        print(f"API Error: {error_msg}")
        return create_error_pdf(f"API Error: {error_msg}")

def generate_notes(transcript):
    try:
        sentences = sent_tokenize(transcript)
    except LookupError:
        sentences = custom_sent_tokenize(transcript)

    long_questions = [f"What is meant by '{sentence}'?" for sentence in sentences[:5]]
    short_questions = [f"Define '{sentence.split()[0]}'." for sentence in sentences[:5]]

    mcqs = []
    for sentence in sentences[:5]:
        mcq = {
            "question": f"What is '{sentence.split()[0]}'?",
            "options": [sentence.split()[0]] + random.sample(["Option 1", "Option 2", "Option 3"], 3),
            "answer": sentence.split()[0]
        }
        mcqs.append(mcq)

    pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
    return pdf_path

def create_pdf(transcript, long_questions, short_questions, mcqs):
    pdf = FPDF()
    pdf.add_page()
    
    pdf.set_font("Arial", "B", 16)
    pdf.cell(200, 10, "Transcription Notes", ln=True, align="C")

    pdf.set_font("Arial", "", 12)
    pdf.multi_cell(0, 10, f"Transcription:\n{transcript}\n\n")

    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Long Questions", ln=True)
    pdf.set_font("Arial", "", 12)
    for question in long_questions:
        pdf.multi_cell(0, 10, f"- {question}\n")

    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Short Questions", ln=True)
    pdf.set_font("Arial", "", 12)
    for question in short_questions:
        pdf.multi_cell(0, 10, f"- {question}\n")

    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
    pdf.set_font("Arial", "", 12)
    for mcq in mcqs:
        pdf.multi_cell(0, 10, f"Q: {mcq['question']}")
        for option in mcq["options"]:
            pdf.multi_cell(0, 10, f"   - {option}")
        pdf.multi_cell(0, 10, f"Answer: {mcq['answer']}\n")

    pdf_path = "/mnt/data/transcription_notes.pdf"
    pdf.output(pdf_path)
    
    return pdf_path

def create_error_pdf(message):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", "B", 16)
    pdf.cell(200, 10, "Error Report", ln=True, align="C")
    pdf.set_font("Arial", "", 12)
    pdf.multi_cell(0, 10, message)
    
    error_pdf_path = "/mnt/data/error_report.pdf"
    pdf.output(error_pdf_path)
    return error_pdf_path

iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(type="filepath"),
    outputs=gr.File(label="Download PDF with Notes or Error Report"),
    title="Voice to Text Converter and Notes Generator",
)

iface.launch()