File size: 5,147 Bytes
bcd1dcf
1507087
bcd1dcf
1507087
bcd1dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfbfcd7
 
bcd1dcf
ce01ec7
a0f6236
bcd1dcf
 
 
 
 
 
 
 
 
 
 
 
 
 
af44622
bcd1dcf
 
 
 
1507087
af44622
bcd1dcf
 
 
 
 
36def4c
 
bcd1dcf
36def4c
 
 
 
bcd1dcf
af44622
36def4c
 
 
 
 
 
 
 
 
 
 
 
 
af44622
 
bcd1dcf
 
 
 
af44622
36def4c
bcd1dcf
36def4c
bcd1dcf
36def4c
bcd1dcf
 
 
36def4c
bcd1dcf
 
 
af44622
 
bcd1dcf
36def4c
bcd1dcf
 
 
af44622
 
bcd1dcf
36def4c
bcd1dcf
 
 
af44622
 
bcd1dcf
 
 
 
 
 
 
af44622
bcd1dcf
 
 
 
 
 
 
 
 
af44622
bcd1dcf
 
 
af44622
bcd1dcf
 
 
 
 
af44622
 
36def4c
bcd1dcf
612bb17
78a2aef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import requests
from fpdf import FPDF
import nltk
import os
import tempfile
from nltk.tokenize import sent_tokenize
import random

# Attempt to download punkt tokenizer
try:
    nltk.download("punkt")
except:
    print("NLTK punkt tokenizer download failed. Using custom tokenizer.")

def custom_sent_tokenize(text):
    return text.split(". ")

def transcribe(audio_path):
    with open(audio_path, "rb") as audio_file:
        audio_data = audio_file.read()

    groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
    headers = {
        "Authorization": "Bearer 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",  # Replace with your actual API key
    }
    files = {
        'file': ('audio.wav', audio_data, 'audio/wav'),
    }
    data = {
        'model': 'whisper-large-v3-turbo',
        'response_format': 'json',
        'language': 'en',
    }

    response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)

    if response.status_code == 200:
        result = response.json()
        transcript = result.get("text", "No transcription available.")
        return generate_notes(transcript)
    else:
        error_msg = response.json().get("error", {}).get("message", "Unknown error.")
        print(f"API Error: {error_msg}")
        return create_error_pdf(f"API Error: {error_msg}")

def generate_notes(transcript):
    try:
        sentences = sent_tokenize(transcript)
    except LookupError:
        sentences = custom_sent_tokenize(transcript)

    # Generate long questions
    long_questions = [f"Explain the concept discussed in: '{sentence}'." for sentence in sentences[:5]]

    # Generate short questions
    short_questions = [f"What does '{sentence.split()[0]}' mean in the context of this text?" for sentence in sentences[:5]]

    # Generate MCQs with relevant distractors
    mcqs = []
    for sentence in sentences[:5]:
        if len(sentence.split()) > 1:  # Ensure there are enough words to create meaningful options
            key_word = sentence.split()[0]  # Use the first word as a key term
            distractors = ["Term A", "Term B", "Term C"]  # Replace with relevant terms if needed
            options = [key_word] + distractors
            random.shuffle(options)  # Shuffle options for randomness
            mcq = {
                "question": f"What is '{key_word}' based on the context?",
                "options": options,
                "answer": key_word
            }
            mcqs.append(mcq)

    # Generate and save a structured PDF
    pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
    return pdf_path

def create_pdf(transcript, long_questions, short_questions, mcqs):
    pdf = FPDF()
    pdf.add_page()
    
    # Add title
    pdf.set_font("Arial", "B", 16)
    pdf.cell(200, 10, "Transcription Notes and Questions", ln=True, align="C")

    # Add transcription content
    pdf.set_font("Arial", "", 12)
    pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")

    # Add long questions
    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Long Questions", ln=True)
    pdf.set_font("Arial", "", 12)
    for question in long_questions:
        pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")

    # Add short questions
    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Short Questions", ln=True)
    pdf.set_font("Arial", "", 12)
    for question in short_questions:
        pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")

    # Add MCQs
    pdf.set_font("Arial", "B", 14)
    pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
    pdf.set_font("Arial", "", 12)
    for mcq in mcqs:
        pdf.multi_cell(0, 10, f"Q: {mcq['question'].encode('latin1', 'replace').decode('latin1')}")
        for option in mcq["options"]:
            pdf.multi_cell(0, 10, f"   - {option.encode('latin1', 'replace').decode('latin1')}")
        pdf.multi_cell(0, 10, f"Answer: {mcq['answer'].encode('latin1', 'replace').decode('latin1')}\n")

    with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
        pdf.output(temp_pdf.name)
        pdf_path = temp_pdf.name
    
    return pdf_path

def create_error_pdf(message):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", "B", 16)
    pdf.cell(200, 10, "Error Report", ln=True, align="C")
    pdf.set_font("Arial", "", 12)
    pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1'))
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
        pdf.output(temp_pdf.name)
        error_pdf_path = temp_pdf.name
    
    return error_pdf_path

iface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(type="filepath"),
    outputs=gr.File(label="Download PDF with Notes or Error Report"),
    title="Voice to Text Converter and Notes Generator",
    description="This app converts audio to text and generates academic questions including long, short, and multiple-choice questions."
)

iface.launch()