query / app.py
lkjjj26's picture
update
727ecf1
raw
history blame
44.4 kB
from transformers import pipeline
from rcsbsearchapi import TextQuery, AttributeQuery, Query
from rcsbsearchapi.search import Sort, SequenceQuery
import os
from dotenv import load_dotenv
from shiny import App, render, ui, reactive
import pandas as pd
import warnings
import re
from UniprotKB_P_Sequence_RCSB_API_test import ProteinQuery, ProteinSearchEngine
import plotly.graph_objects as go
from shinywidgets import output_widget, render_widget
import requests
import asyncio
from Bio import PDB
from Bio.PDB.PDBList import PDBList
from Bio.PDB.Polypeptide import protein_letters_3to1
import shutil
warnings.filterwarnings('ignore')
# Load environment variables from .env file
load_dotenv()
# os.environ["TRANSFORMERS_CACHE"] = "./transformers_cache"
# os.makedirs("./transformers_cache", exist_ok=True)
class PDBSearchAssistant:
def __init__(self, model_name="google/flan-t5-large"):
# Set up HuggingFace pipeline with better model
self.pipe = pipeline(
"text2text-generation",
model=model_name,
max_new_tokens=1024,
temperature=0.1,
torch_dtype="auto",
device="cpu"
)
self.prompt_template = """
Extract specific search parameters from the protein-related query:
1. Protein name or type
2. Resolution cutoff (in Γ…)
3. Protein sequence information
4. Specific PDB ID
5. Experimental method (X-RAY, EM, NMR)
6. Organism/Species information
7. Sequence similarity (in %)
Format:
Protein: [protein name or type]
Organism: [organism/species if mentioned]
Resolution: [maximum resolution in Γ…, if mentioned]
Sequence: [any sequence mentioned]
PDB_ID: [specific PDB ID if mentioned]
Method: [experimental method if mentioned]
Examples:
Query: "Find human insulin structures with X-ray better than 2.5Γ… resolution"
Protein: insulin
Organism: Homo sapiens
Resolution: 2.5
Sequence: none
PDB_ID: none
Method: X-RAY
Query: "Find structures containing sequence with similarity 90% MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"
Protein: none
Organism: none
Resolution: none
Sequence: MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL
PDB_ID: none
Method: none
Similarity: 90
Query: "Get sequence of PDB ID 8ET6"
Protein: none
Organism: none
Resolution: none
Sequence: none
PDB_ID: 8ET6
Method: none
Query: "Find mouse lysozyme structures"
Protein: lysozyme
Organism: Mus musculus
Resolution: none
Sequence: none
PDB_ID: none
Method: none
Now analyze:
Query: {query}
"""
self.pdb_dir = "pdb_tmp" # μž„μ‹œ PDB 파일 μ €μž₯ 디렉토리
os.makedirs(self.pdb_dir, exist_ok=True)
self.pdbl = PDBList()
def search_pdb(self, query):
try:
# Get search parameters from LLM
formatted_prompt = self.prompt_template.format(query=query)
response = self.pipe(formatted_prompt)[0]['generated_text']
print("Generated parameters:", response)
# Parse LLM response
resolution_limit = None
pdb_id = None
sequence = None
method = None
organism = None
has_resolution_query = False
resolution_direction = "less"
similarity = None # Initialize similarity
print("Raw LLM response:", response) # Debug print
# Parse LLM response first to get similarity value
for line in response.split('\n'):
line = line.strip().lower() # Convert to lowercase
if 'similarity:' in line:
try:
similarity_str = line.split('similarity:')[1].strip()
if similarity_str.lower() not in ['none', 'n/a']:
similarity = float(similarity_str)
print(f"Successfully extracted similarity: {similarity}%")
except (ValueError, IndexError) as e:
print(f"Error parsing similarity: {e}")
continue
# If similarity is still None, try to extract from original query
if similarity is None:
# Case insensitive search for similarity pattern
similarity_match = re.search(r'similarity\s+(\d+(?:\.\d+)?)\s*%', query.lower())
if similarity_match:
try:
similarity = float(similarity_match.group(1))
print(f"Extracted similarity from query: {similarity}%")
except ValueError as e:
print(f"Error parsing similarity from query: {e}")
# Check if query contains resolution-related terms
resolution_terms = {
'better': 'less',
'best': 'less',
'highest': 'less',
'good': 'less',
'fine': 'less',
'worse': 'greater',
'worst': 'greater',
'lowest': 'greater',
'poor': 'greater',
'resolution': None,
'Γ₯': None,
'angstrom': None,
'than': None,
'under': 'less',
'below': 'less',
'above': 'greater',
'over': 'greater'
}
# Check if the original query mentions resolution
query_lower = query.lower()
# Determine resolution direction from query
for term, direction in resolution_terms.items():
if term in query_lower:
has_resolution_query = True
if direction: # if not None
resolution_direction = direction
# Also check for numerical values with Γ…
resolution_match = re.search(r'(\d+\.?\d*)\s*Γ₯?.*resolution', query_lower)
if resolution_match:
has_resolution_query = True
try:
resolution_limit = float(resolution_match.group(1))
except ValueError:
pass
# Clean and parse LLM response
for line in response.split('\n'):
if 'Resolution:' in line:
value = line.split('Resolution:')[1].strip()
if value.lower() not in ['none', 'n/a'] and has_resolution_query:
try:
# Extract just the number
res_value = ''.join(c for c in value if c.isdigit() or c == '.')
resolution_limit = float(res_value)
except ValueError:
pass
elif 'Method:' in line:
value = line.split('Method:')[1].strip()
if value.lower() not in ['none', 'n/a']:
method = value.upper()
elif 'Sequence:' in line:
value = line.split('Sequence:')[1].strip()
if value.lower() not in ['none', 'n/a']:
sequence = value
elif 'PDB_ID:' in line:
value = line.split('PDB_ID:')[1].strip()
if value.lower() not in ['none', 'n/a']:
pdb_id = value
elif 'Organism:' in line:
value = line.split('Organism:')[1].strip()
if value.lower() not in ['none', 'n/a']:
organism = value
# Build search query
queries = []
# Check if the query contains a protein sequence pattern
# Check for amino acid sequence (minimum 25 residues)
query_words = query.split()
for word in query_words:
# Check if the word consists of valid amino acid letters
if (len(word) >= 25 and # minimum 25 residues requirement
all(c in 'ACDEFGHIKLMNPQRSTVWY' for c in word.upper()) and
sum(c.isupper() for c in word) / len(word) > 0.8):
sequence = word
break
# If sequence is found, use SequenceQuery
if sequence:
if len(sequence) < 25:
print("Warning: Sequence must be at least 25 residues long. Skipping sequence search.")
sequence = None
else:
# Use the previously extracted similarity value
if similarity is None:
similarity = 100 # default value
print("No similarity specified, using default 100%")
identity_cutoff = similarity / 100.0 # Convert percentage to decimal
print(f"Adding sequence search with identity {similarity}% (cutoff: {identity_cutoff}) for sequence: {sequence}")
sequence_query = SequenceQuery(
sequence,
identity_cutoff=identity_cutoff,
evalue_cutoff=1,
sequence_type="protein"
)
queries.append(sequence_query)
print(f"Created sequence query with parameters: {sequence_query.params}")
# If no sequence, proceed with text search
else:
# Clean the original query and add text search
clean_query = query.lower()
# Remove resolution numbers and terms if they exist
if has_resolution_query:
clean_query = re.sub(r'\d+\.?\d*\s*Γ₯?', '', clean_query)
for term in resolution_terms:
clean_query = clean_query.replace(term, '')
# Clean up extra spaces and trim
clean_query = ' '.join(clean_query.split())
print("Cleaned query:", clean_query)
# Add text search if query is not empty
if clean_query.strip():
text_query = AttributeQuery(
attribute="struct.title",
operator="contains_phrase",
value=clean_query
)
queries.append(text_query)
# Add resolution filter if specified
if resolution_limit and has_resolution_query:
operator = "less_or_equal" if resolution_direction == "less" else "greater_or_equal"
print(f"Adding resolution filter: {operator} {resolution_limit}Γ…")
resolution_query = AttributeQuery(
attribute="rcsb_entry_info.resolution_combined",
operator=operator,
value=resolution_limit
)
queries.append(resolution_query)
# Add PDB ID search if specified
if pdb_id:
print(f"Searching for specific PDB ID: {pdb_id}")
id_query = AttributeQuery(
attribute="rcsb_id",
operator="exact_match",
value=pdb_id.upper()
)
queries = [id_query] # Override other queries for direct PDB ID search
# Add experimental method filter if specified
if method:
print(f"Adding experimental method filter: {method}")
method_query = AttributeQuery(
attribute="exptl.method",
operator="exact_match",
value=method
)
queries.append(method_query)
# Add organism filter if specified
if organism:
print(f"Adding organism filter: {organism}")
organism_query = AttributeQuery(
attribute="rcsb_entity_source_organism.taxonomy_lineage.name",
operator="exact_match",
value=organism
)
queries.append(organism_query)
# Combine queries with AND operator
if queries:
final_query = queries[0]
for q in queries[1:]:
final_query = final_query & q
print("Final query:", final_query)
# Execute search
session = final_query.exec()
results = []
# Process results with additional information
search_engine = ProteinSearchEngine()
try:
for entry in session:
try:
# PDB ID μΆ”μΆœ 방식 κ°œμ„ 
if isinstance(entry, dict):
pdb_id = entry.get('identifier')
elif hasattr(entry, 'identifier'):
pdb_id = entry.identifier
else:
pdb_id = str(entry)
pdb_id = pdb_id.upper() # PDB IDλŠ” 항상 λŒ€λ¬Έμž
if not pdb_id or len(pdb_id) != 4: # PDB IDλŠ” 항상 4자리
continue
# RCSB PDB REST APIλ₯Ό 직접 μ‚¬μš©ν•˜μ—¬ ꡬ쑰 정보 κ°€μ Έμ˜€κΈ°
structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
response = requests.get(structure_url)
if response.status_code != 200:
continue
structure_data = response.json()
# κ²°κ³Ό ꡬ성
result = {
'PDB ID': pdb_id,
'Title': structure_data.get('struct', {}).get('title', 'N/A'),
'# of total residues': structure_data.get('refine_hist', [{}])[0].get('pdbx_number_residues_total', 'N/A'),
'# of atoms of protein': structure_data.get('refine_hist', [{}])[0].get('pdbx_number_atoms_protein', 'N/A'),
'Resolution': f"{structure_data.get('rcsb_entry_info', {}).get('resolution_combined', [0.0])[0]:.2f}Γ…",
'Method': structure_data.get('exptl', [{}])[0].get('method', 'Unknown'),
'Release Date': structure_data.get('rcsb_accession_info', {}).get('initial_release_date', 'N/A')
}
results.append(result)
# Limit to top 10 results
if len(results) >= 10:
break
except Exception as e:
print(f"Error processing entry: {str(e)}")
continue
except Exception as e:
print(f"Error processing results: {str(e)}")
print(f"Error type: {type(e)}")
print(f"Found {len(results)} structures")
return results
return []
except Exception as e:
print(f"Error during search: {str(e)}")
print(f"Error type: {type(e)}")
return []
def get_sequences_by_pdb_id(self, pdb_id):
"""Get sequences for all chains in a PDB structure using Biopython"""
try:
# Download PDB file
pdb_path = self.pdbl.retrieve_pdb_file(
pdb_id,
pdir=self.pdb_dir,
file_format="pdb"
)
if not pdb_path or not os.path.exists(pdb_path):
print(f"Failed to download PDB file for {pdb_id}")
return []
# Parse structure
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure(pdb_id, pdb_path)
# Get structure info from RCSB API for additional details
structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
response = requests.get(structure_url)
structure_data = response.json() if response.status_code == 200 else {}
sequences = []
# Extract sequences from each chain
for model in structure:
for chain in model:
sequence = ""
for residue in chain:
if PDB.is_aa(residue, standard=True):
try:
# 3κΈ€μž μ•„λ―Έλ…Έμ‚° μ½”λ“œλ₯Ό 1κΈ€μžλ‘œ λ³€ν™˜
resname = residue.get_resname()
if resname in protein_letters_3to1:
sequence += protein_letters_3to1[resname]
except:
continue
if sequence: # Only add if sequence is not empty
chain_info = {
'chain_id': chain.id,
'entity_id': '1', # Default entity ID
'description': structure_data.get('struct', {}).get('title', 'N/A'),
'sequence': sequence,
'length': len(sequence),
'resolution': structure_data.get('rcsb_entry_info', {}).get('resolution_combined', [0.0])[0],
'method': structure_data.get('exptl', [{}])[0].get('method', 'Unknown'),
'release_date': structure_data.get('rcsb_accession_info', {}).get('initial_release_date', 'N/A')
}
sequences.append(chain_info)
# Cleanup downloaded file
if os.path.exists(pdb_path):
os.remove(pdb_path)
return sequences
except Exception as e:
print(f"Error getting sequences for PDB ID {pdb_id}: {str(e)}")
return []
def __del__(self):
"""Cleanup temporary directory on object destruction"""
if hasattr(self, 'pdb_dir') and os.path.exists(self.pdb_dir):
shutil.rmtree(self.pdb_dir)
def process_query(self, query):
"""Process query and return results"""
try:
# Get search parameters from LLM
formatted_prompt = self.prompt_template.format(query=query)
response = self.pipe(formatted_prompt)[0]['generated_text']
print("Generated parameters:", response)
# Parse LLM response for PDB ID
pdb_id = None
for line in response.split('\n'):
if 'PDB_ID:' in line:
value = line.split('PDB_ID:')[1].strip()
if value.lower() not in ['none', 'n/a']:
pdb_id = value.upper()
break
# Check if query is asking for sequence
sequence_keywords = ['sequence', 'seq']
is_sequence_query = any(keyword in query.lower() for keyword in sequence_keywords)
if is_sequence_query and pdb_id:
# Get sequences for the PDB ID
sequences = self.get_sequences_by_pdb_id(pdb_id)
return {
"type": "sequence",
"results": sequences
}
# If not a sequence query or no PDB ID found, proceed with normal structure search
return {
"type": "structure",
"results": self.search_pdb(query)
}
except Exception as e:
print(f"Error processing query: {str(e)}")
return {"type": "structure", "results": []}
def pdbsummary(name):
search_engine = ProteinSearchEngine()
query = ProteinQuery(
name,
max_resolution= 5.0
)
results = search_engine.search(query)
answer = ""
for i, structure in enumerate(results, 1):
answer += f"\n{i}. PDB ID : {structure.pdb_id}\n"
answer += f"\nResolution : {structure.resolution:.2f} A \n"
answer += f"Method : {structure.method}\n Title : {structure.title}\n"
answer += f"Release Date : {structure.release_date}\n Sequence length: {len(structure.sequence)} aa\n"
answer += f" Sequence:\n {structure.sequence}\n"
return answer
def render_html(pdb_id):
if pdb_id is None:
return ""
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<script src="https://3Dmol.org/build/3Dmol-min.js"></script>
<script src="https://3Dmol.org/build/3Dmol.ui-min.js"></script>
<style>
.viewer_3Dmoljs {{
width: 100%;
height: 400px;
position: relative;
}}
</style>
</head>
<body>
<div class="viewer_3Dmoljs"
data-pdb="{pdb_id}"
data-backgroundcolor="0xffffff"
data-style="cartoon:color=spectrum"
data-spin="axis:y;speed:0.2">
</div>
</body>
</html>
"""
# HTML μ΄μŠ€μΌ€μ΄ν”„ 처리
escaped_content = (html_content
.replace('"', '&quot;')
.replace('<', '&lt;')
.replace('>', '&gt;')
.replace('\n', '')
)
return f'<iframe style="width: 100%; height: 480px; border: none;" srcdoc=\'{escaped_content}\'></iframe>'
def create_interactive_table(df):
if df.empty:
return go.Figure()
# Reorder columns - Add '# of atoms of protein' to the column order
column_order = ['PDB ID', 'Resolution', 'Title','# of total residues', '# of atoms of protein', 'Method','Release Date']
df = df[column_order]
# Release Date ν˜•μ‹ λ³€κ²½ (YYYY-MM-DD)
df['Release Date'] = pd.to_datetime(df['Release Date']).dt.strftime('%Y-%m-%d')
# Create interactive table
table = go.Figure(data=[go.Table(
header=dict(
values=list(df.columns),
fill_color='paleturquoise',
align='center',
font=dict(size=16),
),
cells=dict(
values=[
[f'<a href="https://www.rcsb.org/structure/{cell}">{cell}</a>'
if i == 0 else cell
for cell in df[col]]
for i, col in enumerate(df.columns)
],
align='center',
font=dict(size=15),
height=35
),
columnwidth=[80, 80, 400, 100, 100, 100, 100], # Updated columnwidth to include new column
customdata=[['html'] * len(df) if i == 0 else [''] * len(df)
for i in range(len(df.columns))],
hoverlabel=dict(bgcolor='white')
)])
# Update table layout
table.update_layout(
margin=dict(l=20, r=20, t=20, b=20),
height=450,
autosize=True
)
return table
# Simplified Shiny app UI definition
app_ui = ui.page_fluid(
ui.tags.head(
ui.tags.style("""
.container-fluid {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.table a {
color: #0d6efd;
text-decoration: none;
}
.table a:hover {
color: #0a58ca;
text-decoration: underline;
}
.shiny-input-container {
max-width: 100%;
margin: 0 auto;
}
#query {
height: 300px;
font-size: 16px;
padding: 15px;
width: 80%;
margin: 0 auto;
display: block;
white-space: pre-wrap;
word-wrap: break-word;
resize: vertical;
overflow-y: auto;
}
.content-wrapper {
text-align: center;
max-width: 1000px;
margin: 0 auto;
}
.search-button {
margin: 20px 0;
}
h2, h4 {
text-align: center;
margin: 20px 0;
}
.example-box {
height: 250px;
margin: 0;
background-color: white;
border: 1px solid #dee2e6;
padding: 20px;
border-radius: 8px;
overflow-y: auto;
text-align: left;
}
.example-box p {
font-weight: bold;
margin-bottom: 10px;
padding-left: 0;
}
.example-box ul {
margin: 0;
padding-left: 20px;
}
.example-box li {
word-wrap: break-word;
margin: 10px 0;
line-height: 1.5;
text-align: left;
}
.query-label {
display: block;
text-align: left;
margin-bottom: 10px;
margin-left: 10%;
font-weight: bold;
}
.status-box {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin: 20px auto;
width: 80%;
text-align: left;
}
.status-label {
font-weight: bold;
margin-right: 10px;
}
.status-ready {
color: #198754; /* Bootstrap success color */
font-weight: bold;
}
.sequence-results {
width: 80%;
margin: 20px auto;
text-align: left;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
background-color: #f8f9fa;
border-radius: 8px;
padding: 20px;
overflow-x: hidden;
}
.sequence-text {
word-break: break-all;
margin: 10px 0;
line-height: 1.5;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.3d-viewer-container {
text-align: center;
margin: 20px auto;
padding: 20px;
background-color: #f8f9fa;
border-radius: 8px;
width: 90%;
}
.3d-iframe {
margin-top: 15px;
border: 1px solid #ddd;
border-radius: 4px;
}
.3d-viewer-container select {
margin: 15px auto;
padding: 8px;
font-size: 16px;
border-radius: 4px;
border: 1px solid #ced4da;
}
.tool-description {
text-align: center;
color: #666;
margin: 0 auto 30px;
max-width: 800px;
line-height: 1.6;
font-size: 1.1em;
}
.main-content {
display: flex;
flex-direction: column;
gap: 20px;
}
.search-section {
background-color: #f8f9fa;
border-radius: 12px;
padding: 25px;
margin-bottom: 20px;
}
.example-box {
height: 100%;
margin: 0;
background-color: white;
border: 1px solid #dee2e6;
padding: 20px;
border-radius: 8px;
}
.status-text {
margin-top: 10px;
color: #666;
font-size: 0.9em;
}
.status-label {
font-weight: bold;
margin-right: 5px;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.query-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
margin-left: 15px;
}
.query-header {
margin-bottom: 10px;
}
.query-label-group {
display: flex;
align-items: center;
gap: 10px; /* 라벨과 λ²„νŠΌ 사이 간격 */
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
padding: 5px 15px;
}
.viewer-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-content {
margin-top: 15px;
}
.viewer-content select {
max-width: 200px;
margin: 0 auto 15px;
display: block;
}
.viewer-iframe {
background-color: white;
border-radius: 4px;
padding: 10px;
}
h4 {
margin: 0;
color: #333;
}
.results-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-section, .sequence-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
height: 100%;
}
.sequence-content {
background-color: white;
border-radius: 4px;
padding: 15px;
margin-top: 15px;
max-height: 600px;
overflow-y: auto;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
overflow-x: hidden;
text-align: left;
}
.sequence-text {
word-break: break-all;
margin: 10px 0;
line-height: 1.5;
text-align: left;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.query-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
margin-left: 15px;
}
.query-header {
margin-bottom: 10px;
}
.query-label-group {
display: flex;
align-items: center;
gap: 10px; /* 라벨과 λ²„νŠΌ 사이 간격 */
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
padding: 5px 15px;
}
.viewer-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-content {
margin-top: 15px;
}
.viewer-content select {
max-width: 200px;
margin: 0 auto 15px;
display: block;
}
.viewer-iframe {
background-color: white;
border-radius: 4px;
padding: 10px;
}
h4 {
margin: 0;
color: #333;
}
.btn-info {
margin-top: 15px;
}
.structure-details-section {
margin-top: 20px;
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
}
.pdb-selector {
display: flex;
align-items: ;
justify-content: flex-start;
gap: 5px;
margin-bottom: 20px;
margin-left: 20px;
}
.pdb-select-label {
font-weight: bold;
margin: 0;
white-space: nowrap;
display: inline-block;
vertical-align: middle;
}
.pdb-selector select {
margin-left: 0;
vertical-align: left;
display: inline-block;
}
.viewer-section, .sequence-section {
background-color: white;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin-top: 20px;
height: 100%;
}
""")
),
ui.div(
{"class": "content-wrapper"},
ui.h2("Advanced PDB Structure Search Tool"),
ui.div(
{"class": "tool-description"},
"An AI-powered search tool for exploring protein structures in the Protein Data Bank (PDB). ",
"Search by protein name, sequence, resolution, experimental method, or organism to find relevant structures. ",
"You can also retrieve amino acid sequences for specific PDB IDs."
),
ui.div(
{"class": "main-content"},
ui.div(
{"class": "search-section"},
ui.row(
ui.column(8,
ui.div(
{"class": "query-header"},
ui.div(
{"class": "query-label-group"},
ui.tags.label(
"Search Query",
{"class": "query-label", "for": "query"}
),
ui.input_action_button("search", "Search",
class_="btn-primary")
)
),
ui.input_text_area(
"query",
"",
value="Human insulin",
width="100%",
resize="vertical"
),
ui.div(
{"class": "status-text"},
ui.tags.span("Status: ", class_="status-label"),
ui.output_text("search_status", inline=True),
ui.tags.i({"class": "fas fa-spinner fa-spin status-spinner"})
)
),
ui.column(4,
ui.div(
{"class": "example-box"},
ui.p("Example queries:"),
ui.tags.ul(
ui.tags.li("Human hemoglobin C resolution better than 2.5Γ…"),
ui.tags.li("Find structures containing sequence with similarity 90% MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"),
ui.tags.li("Sequence of PDB ID 8ET6")
)
)
)
),
),
ui.row(
ui.column(12,
ui.div(
{"class": "results-section"},
ui.h4("Top 10 PDBs Results"),
output_widget("results_table"),
ui.download_button("download", "Download Results",
class_="btn btn-info")
)
)
),
ui.div(
{"class": "structure-details-section"},
ui.div(
{"class": "pdb-selector"},
ui.tags.label(
"Select PDB ID",
{"class": "pdb-select-label"}
),
ui.input_select(
"selected_pdb",
"", # Label is empty as we're using a separate label
choices=[],
width="200px"
)
),
ui.row(
ui.column(6,
ui.div(
{"class": "viewer-section"},
ui.h4("3D Structure Viewer"),
ui.div(
{"class": "viewer-content"},
ui.div(
{"class": "viewer-iframe"},
ui.output_ui("output_iframe")
)
)
)
),
ui.column(6,
ui.div(
{"class": "sequence-section"},
ui.h4("Sequences"),
ui.div(
{"class": "sequence-content"},
ui.output_text("sequence_output")
)
)
)
)
)
)
)
)
def server(input, output, session):
assistant = PDBSearchAssistant()
results_store = reactive.Value({"type": None, "results": []})
status_store = reactive.Value("Ready")
pdb_ids_store = reactive.Value([])
@reactive.Effect
@reactive.event(input.search)
def _():
status_store.set("Searching...")
query_results = assistant.process_query(input.query())
results_store.set(query_results)
pdb_ids = []
if query_results["type"] == "sequence":
if not query_results["results"]:
status_store.set("No sequences found")
else:
status_store.set("Ready")
for line in input.query().split():
if re.match(r'^[0-9A-Za-z]{4}$', line):
pdb_ids.append(line.upper())
else:
df = pd.DataFrame(query_results["results"])
if df.empty:
status_store.set("No structures found")
else:
status_store.set("Ready")
pdb_ids = df['PDB ID'].tolist()
@output
@render_widget
def results_table():
return create_interactive_table(df)
if pdb_ids:
pdb_ids_store.set(pdb_ids)
# Update only one dropdown
ui.update_select(
"selected_pdb",
choices=pdb_ids,
selected=pdb_ids[0]
)
else:
pdb_ids_store.set([])
ui.update_select(
"selected_pdb",
choices=[],
selected=None
)
@output
@render.text
def search_status():
return status_store.get()
@output
@render.text
def sequence_output():
selected_pdb = input.selected_pdb()
if not selected_pdb:
return "No PDB ID selected"
sequences = assistant.get_sequences_by_pdb_id(selected_pdb)
if not sequences:
return f"No sequences found for PDB ID: {selected_pdb}"
output_text = []
for seq in sequences:
output_text.append(f"\nChain {seq['chain_id']} (Entity {seq['entity_id']}):")
output_text.append(f"Description: {seq['description']}")
output_text.append(f"Length: {seq['length']} residues")
output_text.append("Sequence:")
# Format sequence with line breaks every 60 characters
sequence = seq['sequence']
# Add spaces every 10 characters for better readability
sequence = ' '.join(sequence[i:i+10] for i in range(0, len(sequence), 10))
# Then split into lines of 60 characters (plus spaces)
formatted_sequence = '\n'.join([sequence[i:i+66] for i in range(0, len(sequence), 66)])
output_text.append(formatted_sequence)
output_text.append("-" * 60)
return "\n".join(output_text)
@output
@render.ui
def output_iframe():
selected_pdb = input.selected_pdb()
if selected_pdb:
return ui.HTML(render_html(selected_pdb))
return ui.HTML("")
@output
@render.download(filename="pdb_search_results.csv")
def download():
current_results = results_store.get()
if current_results["type"] == "structure":
df = pd.DataFrame(current_results["results"])
else:
df = pd.DataFrame(current_results["results"])
return df.to_csv(index=False)
app = App(app_ui, server)
if __name__ == "__main__":
import nest_asyncio
nest_asyncio.apply()
app.run(host="0.0.0.0", port=7862)