File size: 44,388 Bytes
d8b5f68 727ecf1 d8b5f68 e0471a2 0763a52 d8b5f68 1cccad0 d8b5f68 1cccad0 a9c41ac 1a3570b d8b5f68 23e94ce 727ecf1 d8b5f68 e0471a2 6365aaf e0471a2 727ecf1 1cccad0 d8b5f68 e0471a2 d8b5f68 1cccad0 d8b5f68 e0471a2 0763a52 d8b5f68 1cccad0 727ecf1 6365aaf 0763a52 6365aaf 727ecf1 6365aaf 0763a52 6365aaf 0763a52 6365aaf 0763a52 6365aaf 0763a52 6365aaf d8b5f68 1cccad0 0763a52 d8b5f68 0763a52 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 0763a52 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 727ecf1 d8b5f68 1cccad0 d8b5f68 0763a52 d8b5f68 727ecf1 d8b5f68 e0471a2 d8b5f68 e0471a2 d8b5f68 e0471a2 727ecf1 e0471a2 727ecf1 d8b5f68 e0471a2 d8b5f68 e0471a2 d8b5f68 e0471a2 d8b5f68 1cccad0 e0471a2 0763a52 e0471a2 0763a52 e0471a2 727ecf1 0763a52 727ecf1 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 e0471a2 0763a52 1cccad0 6365aaf 727ecf1 6365aaf 727ecf1 6365aaf e0471a2 6365aaf e0471a2 6365aaf e0471a2 6365aaf e0471a2 6365aaf 727ecf1 1cccad0 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b d8b5f68 727ecf1 e0471a2 d8b5f68 727ecf1 d8b5f68 e0471a2 727ecf1 d8b5f68 727ecf1 e0471a2 d8b5f68 e0471a2 727ecf1 d8b5f68 1cccad0 d8b5f68 e0471a2 d8b5f68 e0471a2 d077a6b e0471a2 0763a52 e0471a2 d077a6b e0471a2 d077a6b e0471a2 d077a6b e0471a2 d077a6b e0471a2 d077a6b e0471a2 d077a6b 12f8076 727ecf1 12f8076 727ecf1 12f8076 d8b5f68 e0471a2 d077a6b e0471a2 d077a6b 727ecf1 a51bfce d077a6b e0471a2 d077a6b e0471a2 d077a6b 12f8076 d077a6b 12f8076 d077a6b 12f8076 d077a6b 12f8076 d077a6b 12f8076 d077a6b e0471a2 d8b5f68 1cccad0 d8b5f68 e0471a2 d077a6b d8b5f68 e0471a2 d8b5f68 e0471a2 d8b5f68 d077a6b e0471a2 0763a52 d077a6b e0471a2 0763a52 d077a6b 0763a52 d077a6b 727ecf1 d077a6b d8b5f68 e0471a2 d8b5f68 e0471a2 12f8076 d077a6b e0471a2 d077a6b e0471a2 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b 7e83b48 d077a6b e0471a2 d8b5f68 1cccad0 d8b5f68 0763a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
from transformers import pipeline
from rcsbsearchapi import TextQuery, AttributeQuery, Query
from rcsbsearchapi.search import Sort, SequenceQuery
import os
from dotenv import load_dotenv
from shiny import App, render, ui, reactive
import pandas as pd
import warnings
import re
from UniprotKB_P_Sequence_RCSB_API_test import ProteinQuery, ProteinSearchEngine
import plotly.graph_objects as go
from shinywidgets import output_widget, render_widget
import requests
import asyncio
from Bio import PDB
from Bio.PDB.PDBList import PDBList
from Bio.PDB.Polypeptide import protein_letters_3to1
import shutil
warnings.filterwarnings('ignore')
# Load environment variables from .env file
load_dotenv()
# os.environ["TRANSFORMERS_CACHE"] = "./transformers_cache"
# os.makedirs("./transformers_cache", exist_ok=True)
class PDBSearchAssistant:
def __init__(self, model_name="google/flan-t5-large"):
# Set up HuggingFace pipeline with better model
self.pipe = pipeline(
"text2text-generation",
model=model_name,
max_new_tokens=1024,
temperature=0.1,
torch_dtype="auto",
device="cpu"
)
self.prompt_template = """
Extract specific search parameters from the protein-related query:
1. Protein name or type
2. Resolution cutoff (in Å)
3. Protein sequence information
4. Specific PDB ID
5. Experimental method (X-RAY, EM, NMR)
6. Organism/Species information
7. Sequence similarity (in %)
Format:
Protein: [protein name or type]
Organism: [organism/species if mentioned]
Resolution: [maximum resolution in Å, if mentioned]
Sequence: [any sequence mentioned]
PDB_ID: [specific PDB ID if mentioned]
Method: [experimental method if mentioned]
Examples:
Query: "Find human insulin structures with X-ray better than 2.5Å resolution"
Protein: insulin
Organism: Homo sapiens
Resolution: 2.5
Sequence: none
PDB_ID: none
Method: X-RAY
Query: "Find structures containing sequence with similarity 90% MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"
Protein: none
Organism: none
Resolution: none
Sequence: MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL
PDB_ID: none
Method: none
Similarity: 90
Query: "Get sequence of PDB ID 8ET6"
Protein: none
Organism: none
Resolution: none
Sequence: none
PDB_ID: 8ET6
Method: none
Query: "Find mouse lysozyme structures"
Protein: lysozyme
Organism: Mus musculus
Resolution: none
Sequence: none
PDB_ID: none
Method: none
Now analyze:
Query: {query}
"""
self.pdb_dir = "pdb_tmp" # 임시 PDB 파일 저장 디렉토리
os.makedirs(self.pdb_dir, exist_ok=True)
self.pdbl = PDBList()
def search_pdb(self, query):
try:
# Get search parameters from LLM
formatted_prompt = self.prompt_template.format(query=query)
response = self.pipe(formatted_prompt)[0]['generated_text']
print("Generated parameters:", response)
# Parse LLM response
resolution_limit = None
pdb_id = None
sequence = None
method = None
organism = None
has_resolution_query = False
resolution_direction = "less"
similarity = None # Initialize similarity
print("Raw LLM response:", response) # Debug print
# Parse LLM response first to get similarity value
for line in response.split('\n'):
line = line.strip().lower() # Convert to lowercase
if 'similarity:' in line:
try:
similarity_str = line.split('similarity:')[1].strip()
if similarity_str.lower() not in ['none', 'n/a']:
similarity = float(similarity_str)
print(f"Successfully extracted similarity: {similarity}%")
except (ValueError, IndexError) as e:
print(f"Error parsing similarity: {e}")
continue
# If similarity is still None, try to extract from original query
if similarity is None:
# Case insensitive search for similarity pattern
similarity_match = re.search(r'similarity\s+(\d+(?:\.\d+)?)\s*%', query.lower())
if similarity_match:
try:
similarity = float(similarity_match.group(1))
print(f"Extracted similarity from query: {similarity}%")
except ValueError as e:
print(f"Error parsing similarity from query: {e}")
# Check if query contains resolution-related terms
resolution_terms = {
'better': 'less',
'best': 'less',
'highest': 'less',
'good': 'less',
'fine': 'less',
'worse': 'greater',
'worst': 'greater',
'lowest': 'greater',
'poor': 'greater',
'resolution': None,
'å': None,
'angstrom': None,
'than': None,
'under': 'less',
'below': 'less',
'above': 'greater',
'over': 'greater'
}
# Check if the original query mentions resolution
query_lower = query.lower()
# Determine resolution direction from query
for term, direction in resolution_terms.items():
if term in query_lower:
has_resolution_query = True
if direction: # if not None
resolution_direction = direction
# Also check for numerical values with Å
resolution_match = re.search(r'(\d+\.?\d*)\s*å?.*resolution', query_lower)
if resolution_match:
has_resolution_query = True
try:
resolution_limit = float(resolution_match.group(1))
except ValueError:
pass
# Clean and parse LLM response
for line in response.split('\n'):
if 'Resolution:' in line:
value = line.split('Resolution:')[1].strip()
if value.lower() not in ['none', 'n/a'] and has_resolution_query:
try:
# Extract just the number
res_value = ''.join(c for c in value if c.isdigit() or c == '.')
resolution_limit = float(res_value)
except ValueError:
pass
elif 'Method:' in line:
value = line.split('Method:')[1].strip()
if value.lower() not in ['none', 'n/a']:
method = value.upper()
elif 'Sequence:' in line:
value = line.split('Sequence:')[1].strip()
if value.lower() not in ['none', 'n/a']:
sequence = value
elif 'PDB_ID:' in line:
value = line.split('PDB_ID:')[1].strip()
if value.lower() not in ['none', 'n/a']:
pdb_id = value
elif 'Organism:' in line:
value = line.split('Organism:')[1].strip()
if value.lower() not in ['none', 'n/a']:
organism = value
# Build search query
queries = []
# Check if the query contains a protein sequence pattern
# Check for amino acid sequence (minimum 25 residues)
query_words = query.split()
for word in query_words:
# Check if the word consists of valid amino acid letters
if (len(word) >= 25 and # minimum 25 residues requirement
all(c in 'ACDEFGHIKLMNPQRSTVWY' for c in word.upper()) and
sum(c.isupper() for c in word) / len(word) > 0.8):
sequence = word
break
# If sequence is found, use SequenceQuery
if sequence:
if len(sequence) < 25:
print("Warning: Sequence must be at least 25 residues long. Skipping sequence search.")
sequence = None
else:
# Use the previously extracted similarity value
if similarity is None:
similarity = 100 # default value
print("No similarity specified, using default 100%")
identity_cutoff = similarity / 100.0 # Convert percentage to decimal
print(f"Adding sequence search with identity {similarity}% (cutoff: {identity_cutoff}) for sequence: {sequence}")
sequence_query = SequenceQuery(
sequence,
identity_cutoff=identity_cutoff,
evalue_cutoff=1,
sequence_type="protein"
)
queries.append(sequence_query)
print(f"Created sequence query with parameters: {sequence_query.params}")
# If no sequence, proceed with text search
else:
# Clean the original query and add text search
clean_query = query.lower()
# Remove resolution numbers and terms if they exist
if has_resolution_query:
clean_query = re.sub(r'\d+\.?\d*\s*å?', '', clean_query)
for term in resolution_terms:
clean_query = clean_query.replace(term, '')
# Clean up extra spaces and trim
clean_query = ' '.join(clean_query.split())
print("Cleaned query:", clean_query)
# Add text search if query is not empty
if clean_query.strip():
text_query = AttributeQuery(
attribute="struct.title",
operator="contains_phrase",
value=clean_query
)
queries.append(text_query)
# Add resolution filter if specified
if resolution_limit and has_resolution_query:
operator = "less_or_equal" if resolution_direction == "less" else "greater_or_equal"
print(f"Adding resolution filter: {operator} {resolution_limit}Å")
resolution_query = AttributeQuery(
attribute="rcsb_entry_info.resolution_combined",
operator=operator,
value=resolution_limit
)
queries.append(resolution_query)
# Add PDB ID search if specified
if pdb_id:
print(f"Searching for specific PDB ID: {pdb_id}")
id_query = AttributeQuery(
attribute="rcsb_id",
operator="exact_match",
value=pdb_id.upper()
)
queries = [id_query] # Override other queries for direct PDB ID search
# Add experimental method filter if specified
if method:
print(f"Adding experimental method filter: {method}")
method_query = AttributeQuery(
attribute="exptl.method",
operator="exact_match",
value=method
)
queries.append(method_query)
# Add organism filter if specified
if organism:
print(f"Adding organism filter: {organism}")
organism_query = AttributeQuery(
attribute="rcsb_entity_source_organism.taxonomy_lineage.name",
operator="exact_match",
value=organism
)
queries.append(organism_query)
# Combine queries with AND operator
if queries:
final_query = queries[0]
for q in queries[1:]:
final_query = final_query & q
print("Final query:", final_query)
# Execute search
session = final_query.exec()
results = []
# Process results with additional information
search_engine = ProteinSearchEngine()
try:
for entry in session:
try:
# PDB ID 추출 방식 개선
if isinstance(entry, dict):
pdb_id = entry.get('identifier')
elif hasattr(entry, 'identifier'):
pdb_id = entry.identifier
else:
pdb_id = str(entry)
pdb_id = pdb_id.upper() # PDB ID는 항상 대문자
if not pdb_id or len(pdb_id) != 4: # PDB ID는 항상 4자리
continue
# RCSB PDB REST API를 직접 사용하여 구조 정보 가져오기
structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
response = requests.get(structure_url)
if response.status_code != 200:
continue
structure_data = response.json()
# 결과 구성
result = {
'PDB ID': pdb_id,
'Title': structure_data.get('struct', {}).get('title', 'N/A'),
'# of total residues': structure_data.get('refine_hist', [{}])[0].get('pdbx_number_residues_total', 'N/A'),
'# of atoms of protein': structure_data.get('refine_hist', [{}])[0].get('pdbx_number_atoms_protein', 'N/A'),
'Resolution': f"{structure_data.get('rcsb_entry_info', {}).get('resolution_combined', [0.0])[0]:.2f}Å",
'Method': structure_data.get('exptl', [{}])[0].get('method', 'Unknown'),
'Release Date': structure_data.get('rcsb_accession_info', {}).get('initial_release_date', 'N/A')
}
results.append(result)
# Limit to top 10 results
if len(results) >= 10:
break
except Exception as e:
print(f"Error processing entry: {str(e)}")
continue
except Exception as e:
print(f"Error processing results: {str(e)}")
print(f"Error type: {type(e)}")
print(f"Found {len(results)} structures")
return results
return []
except Exception as e:
print(f"Error during search: {str(e)}")
print(f"Error type: {type(e)}")
return []
def get_sequences_by_pdb_id(self, pdb_id):
"""Get sequences for all chains in a PDB structure using Biopython"""
try:
# Download PDB file
pdb_path = self.pdbl.retrieve_pdb_file(
pdb_id,
pdir=self.pdb_dir,
file_format="pdb"
)
if not pdb_path or not os.path.exists(pdb_path):
print(f"Failed to download PDB file for {pdb_id}")
return []
# Parse structure
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure(pdb_id, pdb_path)
# Get structure info from RCSB API for additional details
structure_url = f"https://data.rcsb.org/rest/v1/core/entry/{pdb_id}"
response = requests.get(structure_url)
structure_data = response.json() if response.status_code == 200 else {}
sequences = []
# Extract sequences from each chain
for model in structure:
for chain in model:
sequence = ""
for residue in chain:
if PDB.is_aa(residue, standard=True):
try:
# 3글자 아미노산 코드를 1글자로 변환
resname = residue.get_resname()
if resname in protein_letters_3to1:
sequence += protein_letters_3to1[resname]
except:
continue
if sequence: # Only add if sequence is not empty
chain_info = {
'chain_id': chain.id,
'entity_id': '1', # Default entity ID
'description': structure_data.get('struct', {}).get('title', 'N/A'),
'sequence': sequence,
'length': len(sequence),
'resolution': structure_data.get('rcsb_entry_info', {}).get('resolution_combined', [0.0])[0],
'method': structure_data.get('exptl', [{}])[0].get('method', 'Unknown'),
'release_date': structure_data.get('rcsb_accession_info', {}).get('initial_release_date', 'N/A')
}
sequences.append(chain_info)
# Cleanup downloaded file
if os.path.exists(pdb_path):
os.remove(pdb_path)
return sequences
except Exception as e:
print(f"Error getting sequences for PDB ID {pdb_id}: {str(e)}")
return []
def __del__(self):
"""Cleanup temporary directory on object destruction"""
if hasattr(self, 'pdb_dir') and os.path.exists(self.pdb_dir):
shutil.rmtree(self.pdb_dir)
def process_query(self, query):
"""Process query and return results"""
try:
# Get search parameters from LLM
formatted_prompt = self.prompt_template.format(query=query)
response = self.pipe(formatted_prompt)[0]['generated_text']
print("Generated parameters:", response)
# Parse LLM response for PDB ID
pdb_id = None
for line in response.split('\n'):
if 'PDB_ID:' in line:
value = line.split('PDB_ID:')[1].strip()
if value.lower() not in ['none', 'n/a']:
pdb_id = value.upper()
break
# Check if query is asking for sequence
sequence_keywords = ['sequence', 'seq']
is_sequence_query = any(keyword in query.lower() for keyword in sequence_keywords)
if is_sequence_query and pdb_id:
# Get sequences for the PDB ID
sequences = self.get_sequences_by_pdb_id(pdb_id)
return {
"type": "sequence",
"results": sequences
}
# If not a sequence query or no PDB ID found, proceed with normal structure search
return {
"type": "structure",
"results": self.search_pdb(query)
}
except Exception as e:
print(f"Error processing query: {str(e)}")
return {"type": "structure", "results": []}
def pdbsummary(name):
search_engine = ProteinSearchEngine()
query = ProteinQuery(
name,
max_resolution= 5.0
)
results = search_engine.search(query)
answer = ""
for i, structure in enumerate(results, 1):
answer += f"\n{i}. PDB ID : {structure.pdb_id}\n"
answer += f"\nResolution : {structure.resolution:.2f} A \n"
answer += f"Method : {structure.method}\n Title : {structure.title}\n"
answer += f"Release Date : {structure.release_date}\n Sequence length: {len(structure.sequence)} aa\n"
answer += f" Sequence:\n {structure.sequence}\n"
return answer
def render_html(pdb_id):
if pdb_id is None:
return ""
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<script src="https://3Dmol.org/build/3Dmol-min.js"></script>
<script src="https://3Dmol.org/build/3Dmol.ui-min.js"></script>
<style>
.viewer_3Dmoljs {{
width: 100%;
height: 400px;
position: relative;
}}
</style>
</head>
<body>
<div class="viewer_3Dmoljs"
data-pdb="{pdb_id}"
data-backgroundcolor="0xffffff"
data-style="cartoon:color=spectrum"
data-spin="axis:y;speed:0.2">
</div>
</body>
</html>
"""
# HTML 이스케이프 처리
escaped_content = (html_content
.replace('"', '"')
.replace('<', '<')
.replace('>', '>')
.replace('\n', '')
)
return f'<iframe style="width: 100%; height: 480px; border: none;" srcdoc=\'{escaped_content}\'></iframe>'
def create_interactive_table(df):
if df.empty:
return go.Figure()
# Reorder columns - Add '# of atoms of protein' to the column order
column_order = ['PDB ID', 'Resolution', 'Title','# of total residues', '# of atoms of protein', 'Method','Release Date']
df = df[column_order]
# Release Date 형식 변경 (YYYY-MM-DD)
df['Release Date'] = pd.to_datetime(df['Release Date']).dt.strftime('%Y-%m-%d')
# Create interactive table
table = go.Figure(data=[go.Table(
header=dict(
values=list(df.columns),
fill_color='paleturquoise',
align='center',
font=dict(size=16),
),
cells=dict(
values=[
[f'<a href="https://www.rcsb.org/structure/{cell}">{cell}</a>'
if i == 0 else cell
for cell in df[col]]
for i, col in enumerate(df.columns)
],
align='center',
font=dict(size=15),
height=35
),
columnwidth=[80, 80, 400, 100, 100, 100, 100], # Updated columnwidth to include new column
customdata=[['html'] * len(df) if i == 0 else [''] * len(df)
for i in range(len(df.columns))],
hoverlabel=dict(bgcolor='white')
)])
# Update table layout
table.update_layout(
margin=dict(l=20, r=20, t=20, b=20),
height=450,
autosize=True
)
return table
# Simplified Shiny app UI definition
app_ui = ui.page_fluid(
ui.tags.head(
ui.tags.style("""
.container-fluid {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.table a {
color: #0d6efd;
text-decoration: none;
}
.table a:hover {
color: #0a58ca;
text-decoration: underline;
}
.shiny-input-container {
max-width: 100%;
margin: 0 auto;
}
#query {
height: 300px;
font-size: 16px;
padding: 15px;
width: 80%;
margin: 0 auto;
display: block;
white-space: pre-wrap;
word-wrap: break-word;
resize: vertical;
overflow-y: auto;
}
.content-wrapper {
text-align: center;
max-width: 1000px;
margin: 0 auto;
}
.search-button {
margin: 20px 0;
}
h2, h4 {
text-align: center;
margin: 20px 0;
}
.example-box {
height: 250px;
margin: 0;
background-color: white;
border: 1px solid #dee2e6;
padding: 20px;
border-radius: 8px;
overflow-y: auto;
text-align: left;
}
.example-box p {
font-weight: bold;
margin-bottom: 10px;
padding-left: 0;
}
.example-box ul {
margin: 0;
padding-left: 20px;
}
.example-box li {
word-wrap: break-word;
margin: 10px 0;
line-height: 1.5;
text-align: left;
}
.query-label {
display: block;
text-align: left;
margin-bottom: 10px;
margin-left: 10%;
font-weight: bold;
}
.status-box {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin: 20px auto;
width: 80%;
text-align: left;
}
.status-label {
font-weight: bold;
margin-right: 10px;
}
.status-ready {
color: #198754; /* Bootstrap success color */
font-weight: bold;
}
.sequence-results {
width: 80%;
margin: 20px auto;
text-align: left;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
background-color: #f8f9fa;
border-radius: 8px;
padding: 20px;
overflow-x: hidden;
}
.sequence-text {
word-break: break-all;
margin: 10px 0;
line-height: 1.5;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.3d-viewer-container {
text-align: center;
margin: 20px auto;
padding: 20px;
background-color: #f8f9fa;
border-radius: 8px;
width: 90%;
}
.3d-iframe {
margin-top: 15px;
border: 1px solid #ddd;
border-radius: 4px;
}
.3d-viewer-container select {
margin: 15px auto;
padding: 8px;
font-size: 16px;
border-radius: 4px;
border: 1px solid #ced4da;
}
.tool-description {
text-align: center;
color: #666;
margin: 0 auto 30px;
max-width: 800px;
line-height: 1.6;
font-size: 1.1em;
}
.main-content {
display: flex;
flex-direction: column;
gap: 20px;
}
.search-section {
background-color: #f8f9fa;
border-radius: 12px;
padding: 25px;
margin-bottom: 20px;
}
.example-box {
height: 100%;
margin: 0;
background-color: white;
border: 1px solid #dee2e6;
padding: 20px;
border-radius: 8px;
}
.status-text {
margin-top: 10px;
color: #666;
font-size: 0.9em;
}
.status-label {
font-weight: bold;
margin-right: 5px;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.query-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
margin-left: 15px;
}
.query-header {
margin-bottom: 10px;
}
.query-label-group {
display: flex;
align-items: center;
gap: 10px; /* 라벨과 버튼 사이 간격 */
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
padding: 5px 15px;
}
.viewer-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-content {
margin-top: 15px;
}
.viewer-content select {
max-width: 200px;
margin: 0 auto 15px;
display: block;
}
.viewer-iframe {
background-color: white;
border-radius: 4px;
padding: 10px;
}
h4 {
margin: 0;
color: #333;
}
.results-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-section, .sequence-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
height: 100%;
}
.sequence-content {
background-color: white;
border-radius: 4px;
padding: 15px;
margin-top: 15px;
max-height: 600px;
overflow-y: auto;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
overflow-x: hidden;
text-align: left;
}
.sequence-text {
word-break: break-all;
margin: 10px 0;
line-height: 1.5;
text-align: left;
}
.status-spinner {
display: none;
margin-left: 10px;
vertical-align: middle;
}
.status-spinner.active {
display: inline-block;
}
.query-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
margin-left: 15px;
}
.query-header {
margin-bottom: 10px;
}
.query-label-group {
display: flex;
align-items: center;
gap: 10px; /* 라벨과 버튼 사이 간격 */
}
.query-label {
margin: 0;
font-weight: bold;
}
.btn-primary {
padding: 5px 15px;
}
.viewer-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin: 20px 0;
}
.viewer-content {
margin-top: 15px;
}
.viewer-content select {
max-width: 200px;
margin: 0 auto 15px;
display: block;
}
.viewer-iframe {
background-color: white;
border-radius: 4px;
padding: 10px;
}
h4 {
margin: 0;
color: #333;
}
.btn-info {
margin-top: 15px;
}
.structure-details-section {
margin-top: 20px;
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
}
.pdb-selector {
display: flex;
align-items: ;
justify-content: flex-start;
gap: 5px;
margin-bottom: 20px;
margin-left: 20px;
}
.pdb-select-label {
font-weight: bold;
margin: 0;
white-space: nowrap;
display: inline-block;
vertical-align: middle;
}
.pdb-selector select {
margin-left: 0;
vertical-align: left;
display: inline-block;
}
.viewer-section, .sequence-section {
background-color: white;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 20px;
margin-top: 20px;
height: 100%;
}
""")
),
ui.div(
{"class": "content-wrapper"},
ui.h2("Advanced PDB Structure Search Tool"),
ui.div(
{"class": "tool-description"},
"An AI-powered search tool for exploring protein structures in the Protein Data Bank (PDB). ",
"Search by protein name, sequence, resolution, experimental method, or organism to find relevant structures. ",
"You can also retrieve amino acid sequences for specific PDB IDs."
),
ui.div(
{"class": "main-content"},
ui.div(
{"class": "search-section"},
ui.row(
ui.column(8,
ui.div(
{"class": "query-header"},
ui.div(
{"class": "query-label-group"},
ui.tags.label(
"Search Query",
{"class": "query-label", "for": "query"}
),
ui.input_action_button("search", "Search",
class_="btn-primary")
)
),
ui.input_text_area(
"query",
"",
value="Human insulin",
width="100%",
resize="vertical"
),
ui.div(
{"class": "status-text"},
ui.tags.span("Status: ", class_="status-label"),
ui.output_text("search_status", inline=True),
ui.tags.i({"class": "fas fa-spinner fa-spin status-spinner"})
)
),
ui.column(4,
ui.div(
{"class": "example-box"},
ui.p("Example queries:"),
ui.tags.ul(
ui.tags.li("Human hemoglobin C resolution better than 2.5Å"),
ui.tags.li("Find structures containing sequence with similarity 90% MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL"),
ui.tags.li("Sequence of PDB ID 8ET6")
)
)
)
),
),
ui.row(
ui.column(12,
ui.div(
{"class": "results-section"},
ui.h4("Top 10 PDBs Results"),
output_widget("results_table"),
ui.download_button("download", "Download Results",
class_="btn btn-info")
)
)
),
ui.div(
{"class": "structure-details-section"},
ui.div(
{"class": "pdb-selector"},
ui.tags.label(
"Select PDB ID",
{"class": "pdb-select-label"}
),
ui.input_select(
"selected_pdb",
"", # Label is empty as we're using a separate label
choices=[],
width="200px"
)
),
ui.row(
ui.column(6,
ui.div(
{"class": "viewer-section"},
ui.h4("3D Structure Viewer"),
ui.div(
{"class": "viewer-content"},
ui.div(
{"class": "viewer-iframe"},
ui.output_ui("output_iframe")
)
)
)
),
ui.column(6,
ui.div(
{"class": "sequence-section"},
ui.h4("Sequences"),
ui.div(
{"class": "sequence-content"},
ui.output_text("sequence_output")
)
)
)
)
)
)
)
)
def server(input, output, session):
assistant = PDBSearchAssistant()
results_store = reactive.Value({"type": None, "results": []})
status_store = reactive.Value("Ready")
pdb_ids_store = reactive.Value([])
@reactive.Effect
@reactive.event(input.search)
def _():
status_store.set("Searching...")
query_results = assistant.process_query(input.query())
results_store.set(query_results)
pdb_ids = []
if query_results["type"] == "sequence":
if not query_results["results"]:
status_store.set("No sequences found")
else:
status_store.set("Ready")
for line in input.query().split():
if re.match(r'^[0-9A-Za-z]{4}$', line):
pdb_ids.append(line.upper())
else:
df = pd.DataFrame(query_results["results"])
if df.empty:
status_store.set("No structures found")
else:
status_store.set("Ready")
pdb_ids = df['PDB ID'].tolist()
@output
@render_widget
def results_table():
return create_interactive_table(df)
if pdb_ids:
pdb_ids_store.set(pdb_ids)
# Update only one dropdown
ui.update_select(
"selected_pdb",
choices=pdb_ids,
selected=pdb_ids[0]
)
else:
pdb_ids_store.set([])
ui.update_select(
"selected_pdb",
choices=[],
selected=None
)
@output
@render.text
def search_status():
return status_store.get()
@output
@render.text
def sequence_output():
selected_pdb = input.selected_pdb()
if not selected_pdb:
return "No PDB ID selected"
sequences = assistant.get_sequences_by_pdb_id(selected_pdb)
if not sequences:
return f"No sequences found for PDB ID: {selected_pdb}"
output_text = []
for seq in sequences:
output_text.append(f"\nChain {seq['chain_id']} (Entity {seq['entity_id']}):")
output_text.append(f"Description: {seq['description']}")
output_text.append(f"Length: {seq['length']} residues")
output_text.append("Sequence:")
# Format sequence with line breaks every 60 characters
sequence = seq['sequence']
# Add spaces every 10 characters for better readability
sequence = ' '.join(sequence[i:i+10] for i in range(0, len(sequence), 10))
# Then split into lines of 60 characters (plus spaces)
formatted_sequence = '\n'.join([sequence[i:i+66] for i in range(0, len(sequence), 66)])
output_text.append(formatted_sequence)
output_text.append("-" * 60)
return "\n".join(output_text)
@output
@render.ui
def output_iframe():
selected_pdb = input.selected_pdb()
if selected_pdb:
return ui.HTML(render_html(selected_pdb))
return ui.HTML("")
@output
@render.download(filename="pdb_search_results.csv")
def download():
current_results = results_store.get()
if current_results["type"] == "structure":
df = pd.DataFrame(current_results["results"])
else:
df = pd.DataFrame(current_results["results"])
return df.to_csv(index=False)
app = App(app_ui, server)
if __name__ == "__main__":
import nest_asyncio
nest_asyncio.apply()
app.run(host="0.0.0.0", port=7862) |