HumanSD / mmpose /codecs /utils /refinement.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
raw
history blame
7.22 kB
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
import numpy as np
from .post_processing import gaussian_blur, gaussian_blur1d
def refine_keypoints(keypoints: np.ndarray,
heatmaps: np.ndarray) -> np.ndarray:
"""Refine keypoint predictions by moving from the maximum towards the
second maximum by 0.25 pixel. The operation is in-place.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- heatmap size: [W, H]
Args:
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
heatmaps (np.ndarray): The heatmaps in shape (K, H, W)
Returns:
np.ndarray: Refine keypoint coordinates in shape (N, K, D)
"""
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[1:]
for n, k in product(range(N), range(K)):
x, y = keypoints[n, k, :2].astype(int)
if 1 < x < W - 1 and 0 < y < H:
dx = heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1]
else:
dx = 0.
if 1 < y < H - 1 and 0 < x < W:
dy = heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x]
else:
dy = 0.
keypoints[n, k] += np.sign([dx, dy], dtype=np.float32) * 0.25
return keypoints
def refine_keypoints_dark(keypoints: np.ndarray, heatmaps: np.ndarray,
blur_kernel_size: int) -> np.ndarray:
"""Refine keypoint predictions using distribution aware coordinate
decoding. See `Dark Pose`_ for details. The operation is in-place.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- heatmap size: [W, H]
Args:
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
heatmaps (np.ndarray): The heatmaps in shape (K, H, W)
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
modulation
Returns:
np.ndarray: Refine keypoint coordinates in shape (N, K, D)
.. _`Dark Pose`: https://arxiv.org/abs/1910.06278
"""
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[1:]
# modulate heatmaps
heatmaps = gaussian_blur(heatmaps, blur_kernel_size)
np.maximum(heatmaps, 1e-10, heatmaps)
np.log(heatmaps, heatmaps)
for n, k in product(range(N), range(K)):
x, y = keypoints[n, k, :2].astype(int)
if 1 < x < W - 2 and 1 < y < H - 2:
dx = 0.5 * (heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1])
dy = 0.5 * (heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x])
dxx = 0.25 * (
heatmaps[k, y, x + 2] - 2 * heatmaps[k, y, x] +
heatmaps[k, y, x - 2])
dxy = 0.25 * (
heatmaps[k, y + 1, x + 1] - heatmaps[k, y - 1, x + 1] -
heatmaps[k, y + 1, x - 1] + heatmaps[k, y - 1, x - 1])
dyy = 0.25 * (
heatmaps[k, y + 2, x] - 2 * heatmaps[k, y, x] +
heatmaps[k, y - 2, x])
derivative = np.array([[dx], [dy]])
hessian = np.array([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy**2 != 0:
hessianinv = np.linalg.inv(hessian)
offset = -hessianinv @ derivative
offset = np.squeeze(np.array(offset.T), axis=0)
keypoints[n, k, :2] += offset
return keypoints
def refine_keypoints_dark_udp(keypoints: np.ndarray, heatmaps: np.ndarray,
blur_kernel_size: int) -> np.ndarray:
"""Refine keypoint predictions using distribution aware coordinate decoding
for UDP. See `UDP`_ for details. The operation is in-place.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- heatmap size: [W, H]
Args:
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
heatmaps (np.ndarray): The heatmaps in shape (K, H, W)
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
modulation
Returns:
np.ndarray: Refine keypoint coordinates in shape (N, K, D)
.. _`UDP`: https://arxiv.org/abs/1911.07524
"""
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[1:]
# modulate heatmaps
heatmaps = gaussian_blur(heatmaps, blur_kernel_size)
np.clip(heatmaps, 1e-3, 50., heatmaps)
np.log(heatmaps, heatmaps)
heatmaps_pad = np.pad(
heatmaps, ((0, 0), (1, 1), (1, 1)), mode='edge').flatten()
for n in range(N):
index = keypoints[n, :, 0] + 1 + (keypoints[n, :, 1] + 1) * (W + 2)
index += (W + 2) * (H + 2) * np.arange(0, K)
index = index.astype(int).reshape(-1, 1)
i_ = heatmaps_pad[index]
ix1 = heatmaps_pad[index + 1]
iy1 = heatmaps_pad[index + W + 2]
ix1y1 = heatmaps_pad[index + W + 3]
ix1_y1_ = heatmaps_pad[index - W - 3]
ix1_ = heatmaps_pad[index - 1]
iy1_ = heatmaps_pad[index - 2 - W]
dx = 0.5 * (ix1 - ix1_)
dy = 0.5 * (iy1 - iy1_)
derivative = np.concatenate([dx, dy], axis=1)
derivative = derivative.reshape(K, 2, 1)
dxx = ix1 - 2 * i_ + ix1_
dyy = iy1 - 2 * i_ + iy1_
dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_)
hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1)
hessian = hessian.reshape(K, 2, 2)
hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2))
keypoints[n] -= np.einsum('imn,ink->imk', hessian,
derivative).squeeze()
return keypoints
def refine_simcc_dark(keypoints: np.ndarray, simcc: np.ndarray,
blur_kernel_size: int) -> np.ndarray:
"""SimCC version. Refine keypoint predictions using distribution aware
coordinate decoding for UDP. See `UDP`_ for details. The operation is in-
place.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
Args:
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
simcc (np.ndarray): The heatmaps in shape (N, K, Wx)
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
modulation
Returns:
np.ndarray: Refine keypoint coordinates in shape (N, K, D)
.. _`UDP`: https://arxiv.org/abs/1911.07524
"""
N = simcc.shape[0]
# modulate simcc
simcc = gaussian_blur1d(simcc, blur_kernel_size)
np.clip(simcc, 1e-3, 50., simcc)
np.log(simcc, simcc)
simcc = np.pad(simcc, ((0, 0), (0, 0), (2, 2)), 'edge')
for n in range(N):
px = (keypoints[n] + 2.5).astype(np.int64).reshape(-1, 1) # K, 1
dx0 = np.take_along_axis(simcc[n], px, axis=1) # K, 1
dx1 = np.take_along_axis(simcc[n], px + 1, axis=1)
dx_1 = np.take_along_axis(simcc[n], px - 1, axis=1)
dx2 = np.take_along_axis(simcc[n], px + 2, axis=1)
dx_2 = np.take_along_axis(simcc[n], px - 2, axis=1)
dx = 0.5 * (dx1 - dx_1)
dxx = 1e-9 + 0.25 * (dx2 - 2 * dx0 + dx_2)
offset = dx / dxx
keypoints[n] -= offset.reshape(-1)
return keypoints