Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from itertools import product | |
import numpy as np | |
from .post_processing import gaussian_blur, gaussian_blur1d | |
def refine_keypoints(keypoints: np.ndarray, | |
heatmaps: np.ndarray) -> np.ndarray: | |
"""Refine keypoint predictions by moving from the maximum towards the | |
second maximum by 0.25 pixel. The operation is in-place. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- heatmap size: [W, H] | |
Args: | |
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D) | |
heatmaps (np.ndarray): The heatmaps in shape (K, H, W) | |
Returns: | |
np.ndarray: Refine keypoint coordinates in shape (N, K, D) | |
""" | |
N, K = keypoints.shape[:2] | |
H, W = heatmaps.shape[1:] | |
for n, k in product(range(N), range(K)): | |
x, y = keypoints[n, k, :2].astype(int) | |
if 1 < x < W - 1 and 0 < y < H: | |
dx = heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1] | |
else: | |
dx = 0. | |
if 1 < y < H - 1 and 0 < x < W: | |
dy = heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x] | |
else: | |
dy = 0. | |
keypoints[n, k] += np.sign([dx, dy], dtype=np.float32) * 0.25 | |
return keypoints | |
def refine_keypoints_dark(keypoints: np.ndarray, heatmaps: np.ndarray, | |
blur_kernel_size: int) -> np.ndarray: | |
"""Refine keypoint predictions using distribution aware coordinate | |
decoding. See `Dark Pose`_ for details. The operation is in-place. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- heatmap size: [W, H] | |
Args: | |
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D) | |
heatmaps (np.ndarray): The heatmaps in shape (K, H, W) | |
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
modulation | |
Returns: | |
np.ndarray: Refine keypoint coordinates in shape (N, K, D) | |
.. _`Dark Pose`: https://arxiv.org/abs/1910.06278 | |
""" | |
N, K = keypoints.shape[:2] | |
H, W = heatmaps.shape[1:] | |
# modulate heatmaps | |
heatmaps = gaussian_blur(heatmaps, blur_kernel_size) | |
np.maximum(heatmaps, 1e-10, heatmaps) | |
np.log(heatmaps, heatmaps) | |
for n, k in product(range(N), range(K)): | |
x, y = keypoints[n, k, :2].astype(int) | |
if 1 < x < W - 2 and 1 < y < H - 2: | |
dx = 0.5 * (heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1]) | |
dy = 0.5 * (heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x]) | |
dxx = 0.25 * ( | |
heatmaps[k, y, x + 2] - 2 * heatmaps[k, y, x] + | |
heatmaps[k, y, x - 2]) | |
dxy = 0.25 * ( | |
heatmaps[k, y + 1, x + 1] - heatmaps[k, y - 1, x + 1] - | |
heatmaps[k, y + 1, x - 1] + heatmaps[k, y - 1, x - 1]) | |
dyy = 0.25 * ( | |
heatmaps[k, y + 2, x] - 2 * heatmaps[k, y, x] + | |
heatmaps[k, y - 2, x]) | |
derivative = np.array([[dx], [dy]]) | |
hessian = np.array([[dxx, dxy], [dxy, dyy]]) | |
if dxx * dyy - dxy**2 != 0: | |
hessianinv = np.linalg.inv(hessian) | |
offset = -hessianinv @ derivative | |
offset = np.squeeze(np.array(offset.T), axis=0) | |
keypoints[n, k, :2] += offset | |
return keypoints | |
def refine_keypoints_dark_udp(keypoints: np.ndarray, heatmaps: np.ndarray, | |
blur_kernel_size: int) -> np.ndarray: | |
"""Refine keypoint predictions using distribution aware coordinate decoding | |
for UDP. See `UDP`_ for details. The operation is in-place. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- heatmap size: [W, H] | |
Args: | |
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D) | |
heatmaps (np.ndarray): The heatmaps in shape (K, H, W) | |
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
modulation | |
Returns: | |
np.ndarray: Refine keypoint coordinates in shape (N, K, D) | |
.. _`UDP`: https://arxiv.org/abs/1911.07524 | |
""" | |
N, K = keypoints.shape[:2] | |
H, W = heatmaps.shape[1:] | |
# modulate heatmaps | |
heatmaps = gaussian_blur(heatmaps, blur_kernel_size) | |
np.clip(heatmaps, 1e-3, 50., heatmaps) | |
np.log(heatmaps, heatmaps) | |
heatmaps_pad = np.pad( | |
heatmaps, ((0, 0), (1, 1), (1, 1)), mode='edge').flatten() | |
for n in range(N): | |
index = keypoints[n, :, 0] + 1 + (keypoints[n, :, 1] + 1) * (W + 2) | |
index += (W + 2) * (H + 2) * np.arange(0, K) | |
index = index.astype(int).reshape(-1, 1) | |
i_ = heatmaps_pad[index] | |
ix1 = heatmaps_pad[index + 1] | |
iy1 = heatmaps_pad[index + W + 2] | |
ix1y1 = heatmaps_pad[index + W + 3] | |
ix1_y1_ = heatmaps_pad[index - W - 3] | |
ix1_ = heatmaps_pad[index - 1] | |
iy1_ = heatmaps_pad[index - 2 - W] | |
dx = 0.5 * (ix1 - ix1_) | |
dy = 0.5 * (iy1 - iy1_) | |
derivative = np.concatenate([dx, dy], axis=1) | |
derivative = derivative.reshape(K, 2, 1) | |
dxx = ix1 - 2 * i_ + ix1_ | |
dyy = iy1 - 2 * i_ + iy1_ | |
dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_) | |
hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1) | |
hessian = hessian.reshape(K, 2, 2) | |
hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2)) | |
keypoints[n] -= np.einsum('imn,ink->imk', hessian, | |
derivative).squeeze() | |
return keypoints | |
def refine_simcc_dark(keypoints: np.ndarray, simcc: np.ndarray, | |
blur_kernel_size: int) -> np.ndarray: | |
"""SimCC version. Refine keypoint predictions using distribution aware | |
coordinate decoding for UDP. See `UDP`_ for details. The operation is in- | |
place. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
Args: | |
keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D) | |
simcc (np.ndarray): The heatmaps in shape (N, K, Wx) | |
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
modulation | |
Returns: | |
np.ndarray: Refine keypoint coordinates in shape (N, K, D) | |
.. _`UDP`: https://arxiv.org/abs/1911.07524 | |
""" | |
N = simcc.shape[0] | |
# modulate simcc | |
simcc = gaussian_blur1d(simcc, blur_kernel_size) | |
np.clip(simcc, 1e-3, 50., simcc) | |
np.log(simcc, simcc) | |
simcc = np.pad(simcc, ((0, 0), (0, 0), (2, 2)), 'edge') | |
for n in range(N): | |
px = (keypoints[n] + 2.5).astype(np.int64).reshape(-1, 1) # K, 1 | |
dx0 = np.take_along_axis(simcc[n], px, axis=1) # K, 1 | |
dx1 = np.take_along_axis(simcc[n], px + 1, axis=1) | |
dx_1 = np.take_along_axis(simcc[n], px - 1, axis=1) | |
dx2 = np.take_along_axis(simcc[n], px + 2, axis=1) | |
dx_2 = np.take_along_axis(simcc[n], px - 2, axis=1) | |
dx = 0.5 * (dx1 - dx_1) | |
dxx = 1e-9 + 0.25 * (dx2 - 2 * dx0 + dx_2) | |
offset = dx / dxx | |
keypoints[n] -= offset.reshape(-1) | |
return keypoints | |