File size: 7,221 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product

import numpy as np

from .post_processing import gaussian_blur, gaussian_blur1d


def refine_keypoints(keypoints: np.ndarray,
                     heatmaps: np.ndarray) -> np.ndarray:
    """Refine keypoint predictions by moving from the maximum towards the
    second maximum by 0.25 pixel. The operation is in-place.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - heatmap size: [W, H]

    Args:
        keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
        heatmaps (np.ndarray): The heatmaps in shape (K, H, W)

    Returns:
        np.ndarray: Refine keypoint coordinates in shape (N, K, D)
    """
    N, K = keypoints.shape[:2]
    H, W = heatmaps.shape[1:]

    for n, k in product(range(N), range(K)):
        x, y = keypoints[n, k, :2].astype(int)

        if 1 < x < W - 1 and 0 < y < H:
            dx = heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1]
        else:
            dx = 0.

        if 1 < y < H - 1 and 0 < x < W:
            dy = heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x]
        else:
            dy = 0.

        keypoints[n, k] += np.sign([dx, dy], dtype=np.float32) * 0.25

    return keypoints


def refine_keypoints_dark(keypoints: np.ndarray, heatmaps: np.ndarray,
                          blur_kernel_size: int) -> np.ndarray:
    """Refine keypoint predictions using distribution aware coordinate
    decoding. See `Dark Pose`_ for details. The operation is in-place.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - heatmap size: [W, H]

    Args:
        keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
        heatmaps (np.ndarray): The heatmaps in shape (K, H, W)
        blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
            modulation

    Returns:
        np.ndarray: Refine keypoint coordinates in shape (N, K, D)

    .. _`Dark Pose`: https://arxiv.org/abs/1910.06278
    """
    N, K = keypoints.shape[:2]
    H, W = heatmaps.shape[1:]

    # modulate heatmaps
    heatmaps = gaussian_blur(heatmaps, blur_kernel_size)
    np.maximum(heatmaps, 1e-10, heatmaps)
    np.log(heatmaps, heatmaps)

    for n, k in product(range(N), range(K)):
        x, y = keypoints[n, k, :2].astype(int)
        if 1 < x < W - 2 and 1 < y < H - 2:
            dx = 0.5 * (heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1])
            dy = 0.5 * (heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x])

            dxx = 0.25 * (
                heatmaps[k, y, x + 2] - 2 * heatmaps[k, y, x] +
                heatmaps[k, y, x - 2])
            dxy = 0.25 * (
                heatmaps[k, y + 1, x + 1] - heatmaps[k, y - 1, x + 1] -
                heatmaps[k, y + 1, x - 1] + heatmaps[k, y - 1, x - 1])
            dyy = 0.25 * (
                heatmaps[k, y + 2, x] - 2 * heatmaps[k, y, x] +
                heatmaps[k, y - 2, x])
            derivative = np.array([[dx], [dy]])
            hessian = np.array([[dxx, dxy], [dxy, dyy]])
            if dxx * dyy - dxy**2 != 0:
                hessianinv = np.linalg.inv(hessian)
                offset = -hessianinv @ derivative
                offset = np.squeeze(np.array(offset.T), axis=0)
                keypoints[n, k, :2] += offset
    return keypoints


def refine_keypoints_dark_udp(keypoints: np.ndarray, heatmaps: np.ndarray,
                              blur_kernel_size: int) -> np.ndarray:
    """Refine keypoint predictions using distribution aware coordinate decoding
    for UDP. See `UDP`_ for details. The operation is in-place.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - heatmap size: [W, H]

    Args:
        keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
        heatmaps (np.ndarray): The heatmaps in shape (K, H, W)
        blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
            modulation

    Returns:
        np.ndarray: Refine keypoint coordinates in shape (N, K, D)

    .. _`UDP`: https://arxiv.org/abs/1911.07524
    """
    N, K = keypoints.shape[:2]
    H, W = heatmaps.shape[1:]

    # modulate heatmaps
    heatmaps = gaussian_blur(heatmaps, blur_kernel_size)
    np.clip(heatmaps, 1e-3, 50., heatmaps)
    np.log(heatmaps, heatmaps)

    heatmaps_pad = np.pad(
        heatmaps, ((0, 0), (1, 1), (1, 1)), mode='edge').flatten()

    for n in range(N):
        index = keypoints[n, :, 0] + 1 + (keypoints[n, :, 1] + 1) * (W + 2)
        index += (W + 2) * (H + 2) * np.arange(0, K)
        index = index.astype(int).reshape(-1, 1)
        i_ = heatmaps_pad[index]
        ix1 = heatmaps_pad[index + 1]
        iy1 = heatmaps_pad[index + W + 2]
        ix1y1 = heatmaps_pad[index + W + 3]
        ix1_y1_ = heatmaps_pad[index - W - 3]
        ix1_ = heatmaps_pad[index - 1]
        iy1_ = heatmaps_pad[index - 2 - W]

        dx = 0.5 * (ix1 - ix1_)
        dy = 0.5 * (iy1 - iy1_)
        derivative = np.concatenate([dx, dy], axis=1)
        derivative = derivative.reshape(K, 2, 1)

        dxx = ix1 - 2 * i_ + ix1_
        dyy = iy1 - 2 * i_ + iy1_
        dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_)
        hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1)
        hessian = hessian.reshape(K, 2, 2)
        hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2))
        keypoints[n] -= np.einsum('imn,ink->imk', hessian,
                                  derivative).squeeze()

    return keypoints


def refine_simcc_dark(keypoints: np.ndarray, simcc: np.ndarray,
                      blur_kernel_size: int) -> np.ndarray:
    """SimCC version. Refine keypoint predictions using distribution aware
    coordinate decoding for UDP. See `UDP`_ for details. The operation is in-
    place.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D

    Args:
        keypoints (np.ndarray): The keypoint coordinates in shape (N, K, D)
        simcc (np.ndarray): The heatmaps in shape (N, K, Wx)
        blur_kernel_size (int): The Gaussian blur kernel size of the heatmap
            modulation

    Returns:
        np.ndarray: Refine keypoint coordinates in shape (N, K, D)

    .. _`UDP`: https://arxiv.org/abs/1911.07524
    """
    N = simcc.shape[0]

    # modulate simcc
    simcc = gaussian_blur1d(simcc, blur_kernel_size)
    np.clip(simcc, 1e-3, 50., simcc)
    np.log(simcc, simcc)

    simcc = np.pad(simcc, ((0, 0), (0, 0), (2, 2)), 'edge')

    for n in range(N):
        px = (keypoints[n] + 2.5).astype(np.int64).reshape(-1, 1)  # K, 1

        dx0 = np.take_along_axis(simcc[n], px, axis=1)  # K, 1
        dx1 = np.take_along_axis(simcc[n], px + 1, axis=1)
        dx_1 = np.take_along_axis(simcc[n], px - 1, axis=1)
        dx2 = np.take_along_axis(simcc[n], px + 2, axis=1)
        dx_2 = np.take_along_axis(simcc[n], px - 2, axis=1)

        dx = 0.5 * (dx1 - dx_1)
        dxx = 1e-9 + 0.25 * (dx2 - 2 * dx0 + dx_2)

        offset = dx / dxx
        keypoints[n] -= offset.reshape(-1)

    return keypoints