Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.model import BaseModule | |
from mmpose.registry import MODELS | |
from .base_backbone import BaseBackbone | |
class CpmBlock(BaseModule): | |
"""CpmBlock for Convolutional Pose Machine. | |
Args: | |
in_channels (int): Input channels of this block. | |
channels (list): Output channels of each conv module. | |
kernels (list): Kernel sizes of each conv module. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
""" | |
def __init__(self, | |
in_channels, | |
channels=(128, 128, 128), | |
kernels=(11, 11, 11), | |
norm_cfg=None, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
assert len(channels) == len(kernels) | |
layers = [] | |
for i in range(len(channels)): | |
if i == 0: | |
input_channels = in_channels | |
else: | |
input_channels = channels[i - 1] | |
layers.append( | |
ConvModule( | |
input_channels, | |
channels[i], | |
kernels[i], | |
padding=(kernels[i] - 1) // 2, | |
norm_cfg=norm_cfg)) | |
self.model = nn.Sequential(*layers) | |
def forward(self, x): | |
"""Model forward function.""" | |
out = self.model(x) | |
return out | |
class CPM(BaseBackbone): | |
"""CPM backbone. | |
Convolutional Pose Machines. | |
More details can be found in the `paper | |
<https://arxiv.org/abs/1602.00134>`__ . | |
Args: | |
in_channels (int): The input channels of the CPM. | |
out_channels (int): The output channels of the CPM. | |
feat_channels (int): Feature channel of each CPM stage. | |
middle_channels (int): Feature channel of conv after the middle stage. | |
num_stages (int): Number of stages. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: | |
``[ | |
dict(type='Normal', std=0.001, layer=['Conv2d']), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
]`` | |
Example: | |
>>> from mmpose.models import CPM | |
>>> import torch | |
>>> self = CPM(3, 17) | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 3, 368, 368) | |
>>> level_outputs = self.forward(inputs) | |
>>> for level_output in level_outputs: | |
... print(tuple(level_output.shape)) | |
(1, 17, 46, 46) | |
(1, 17, 46, 46) | |
(1, 17, 46, 46) | |
(1, 17, 46, 46) | |
(1, 17, 46, 46) | |
(1, 17, 46, 46) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
feat_channels=128, | |
middle_channels=32, | |
num_stages=6, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
init_cfg=[ | |
dict(type='Normal', std=0.001, layer=['Conv2d']), | |
dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) | |
], | |
): | |
# Protect mutable default arguments | |
norm_cfg = copy.deepcopy(norm_cfg) | |
super().__init__(init_cfg=init_cfg) | |
assert in_channels == 3 | |
self.num_stages = num_stages | |
assert self.num_stages >= 1 | |
self.stem = nn.Sequential( | |
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
ConvModule(128, 32, 5, padding=2, norm_cfg=norm_cfg), | |
ConvModule(32, 512, 9, padding=4, norm_cfg=norm_cfg), | |
ConvModule(512, 512, 1, padding=0, norm_cfg=norm_cfg), | |
ConvModule(512, out_channels, 1, padding=0, act_cfg=None)) | |
self.middle = nn.Sequential( | |
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) | |
self.cpm_stages = nn.ModuleList([ | |
CpmBlock( | |
middle_channels + out_channels, | |
channels=[feat_channels, feat_channels, feat_channels], | |
kernels=[11, 11, 11], | |
norm_cfg=norm_cfg) for _ in range(num_stages - 1) | |
]) | |
self.middle_conv = nn.ModuleList([ | |
nn.Sequential( | |
ConvModule( | |
128, middle_channels, 5, padding=2, norm_cfg=norm_cfg)) | |
for _ in range(num_stages - 1) | |
]) | |
self.out_convs = nn.ModuleList([ | |
nn.Sequential( | |
ConvModule( | |
feat_channels, | |
feat_channels, | |
1, | |
padding=0, | |
norm_cfg=norm_cfg), | |
ConvModule(feat_channels, out_channels, 1, act_cfg=None)) | |
for _ in range(num_stages - 1) | |
]) | |
def forward(self, x): | |
"""Model forward function.""" | |
stage1_out = self.stem(x) | |
middle_out = self.middle(x) | |
out_feats = [] | |
out_feats.append(stage1_out) | |
for ind in range(self.num_stages - 1): | |
single_stage = self.cpm_stages[ind] | |
out_conv = self.out_convs[ind] | |
inp_feat = torch.cat( | |
[out_feats[-1], self.middle_conv[ind](middle_out)], 1) | |
cpm_feat = single_stage(inp_feat) | |
out_feat = out_conv(cpm_feat) | |
out_feats.append(out_feat) | |
return out_feats | |