File size: 6,174 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule

from mmpose.registry import MODELS
from .base_backbone import BaseBackbone


class CpmBlock(BaseModule):
    """CpmBlock for Convolutional Pose Machine.

    Args:
        in_channels (int): Input channels of this block.
        channels (list): Output channels of each conv module.
        kernels (list): Kernel sizes of each conv module.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 channels=(128, 128, 128),
                 kernels=(11, 11, 11),
                 norm_cfg=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        assert len(channels) == len(kernels)
        layers = []
        for i in range(len(channels)):
            if i == 0:
                input_channels = in_channels
            else:
                input_channels = channels[i - 1]
            layers.append(
                ConvModule(
                    input_channels,
                    channels[i],
                    kernels[i],
                    padding=(kernels[i] - 1) // 2,
                    norm_cfg=norm_cfg))
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        """Model forward function."""
        out = self.model(x)
        return out


@MODELS.register_module()
class CPM(BaseBackbone):
    """CPM backbone.

    Convolutional Pose Machines.
    More details can be found in the `paper
    <https://arxiv.org/abs/1602.00134>`__ .

    Args:
        in_channels (int): The input channels of the CPM.
        out_channels (int): The output channels of the CPM.
        feat_channels (int): Feature channel of each CPM stage.
        middle_channels (int): Feature channel of conv after the middle stage.
        num_stages (int): Number of stages.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default:
            ``[
                dict(type='Normal', std=0.001, layer=['Conv2d']),
                dict(
                    type='Constant',
                    val=1,
                    layer=['_BatchNorm', 'GroupNorm'])
            ]``

    Example:
        >>> from mmpose.models import CPM
        >>> import torch
        >>> self = CPM(3, 17)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 368, 368)
        >>> level_outputs = self.forward(inputs)
        >>> for level_output in level_outputs:
        ...     print(tuple(level_output.shape))
        (1, 17, 46, 46)
        (1, 17, 46, 46)
        (1, 17, 46, 46)
        (1, 17, 46, 46)
        (1, 17, 46, 46)
        (1, 17, 46, 46)
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        feat_channels=128,
        middle_channels=32,
        num_stages=6,
        norm_cfg=dict(type='BN', requires_grad=True),
        init_cfg=[
            dict(type='Normal', std=0.001, layer=['Conv2d']),
            dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm'])
        ],
    ):
        # Protect mutable default arguments
        norm_cfg = copy.deepcopy(norm_cfg)
        super().__init__(init_cfg=init_cfg)

        assert in_channels == 3

        self.num_stages = num_stages
        assert self.num_stages >= 1

        self.stem = nn.Sequential(
            ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ConvModule(128, 32, 5, padding=2, norm_cfg=norm_cfg),
            ConvModule(32, 512, 9, padding=4, norm_cfg=norm_cfg),
            ConvModule(512, 512, 1, padding=0, norm_cfg=norm_cfg),
            ConvModule(512, out_channels, 1, padding=0, act_cfg=None))

        self.middle = nn.Sequential(
            ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.cpm_stages = nn.ModuleList([
            CpmBlock(
                middle_channels + out_channels,
                channels=[feat_channels, feat_channels, feat_channels],
                kernels=[11, 11, 11],
                norm_cfg=norm_cfg) for _ in range(num_stages - 1)
        ])

        self.middle_conv = nn.ModuleList([
            nn.Sequential(
                ConvModule(
                    128, middle_channels, 5, padding=2, norm_cfg=norm_cfg))
            for _ in range(num_stages - 1)
        ])

        self.out_convs = nn.ModuleList([
            nn.Sequential(
                ConvModule(
                    feat_channels,
                    feat_channels,
                    1,
                    padding=0,
                    norm_cfg=norm_cfg),
                ConvModule(feat_channels, out_channels, 1, act_cfg=None))
            for _ in range(num_stages - 1)
        ])

    def forward(self, x):
        """Model forward function."""
        stage1_out = self.stem(x)
        middle_out = self.middle(x)
        out_feats = []

        out_feats.append(stage1_out)

        for ind in range(self.num_stages - 1):
            single_stage = self.cpm_stages[ind]
            out_conv = self.out_convs[ind]

            inp_feat = torch.cat(
                [out_feats[-1], self.middle_conv[ind](middle_out)], 1)
            cpm_feat = single_stage(inp_feat)
            out_feat = out_conv(cpm_feat)
            out_feats.append(out_feat)

        return out_feats