Spaces:
Runtime error
Runtime error
File size: 6,174 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmpose.registry import MODELS
from .base_backbone import BaseBackbone
class CpmBlock(BaseModule):
"""CpmBlock for Convolutional Pose Machine.
Args:
in_channels (int): Input channels of this block.
channels (list): Output channels of each conv module.
kernels (list): Kernel sizes of each conv module.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
channels=(128, 128, 128),
kernels=(11, 11, 11),
norm_cfg=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
assert len(channels) == len(kernels)
layers = []
for i in range(len(channels)):
if i == 0:
input_channels = in_channels
else:
input_channels = channels[i - 1]
layers.append(
ConvModule(
input_channels,
channels[i],
kernels[i],
padding=(kernels[i] - 1) // 2,
norm_cfg=norm_cfg))
self.model = nn.Sequential(*layers)
def forward(self, x):
"""Model forward function."""
out = self.model(x)
return out
@MODELS.register_module()
class CPM(BaseBackbone):
"""CPM backbone.
Convolutional Pose Machines.
More details can be found in the `paper
<https://arxiv.org/abs/1602.00134>`__ .
Args:
in_channels (int): The input channels of the CPM.
out_channels (int): The output channels of the CPM.
feat_channels (int): Feature channel of each CPM stage.
middle_channels (int): Feature channel of conv after the middle stage.
num_stages (int): Number of stages.
norm_cfg (dict): Dictionary to construct and config norm layer.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default:
``[
dict(type='Normal', std=0.001, layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]``
Example:
>>> from mmpose.models import CPM
>>> import torch
>>> self = CPM(3, 17)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 368, 368)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
... print(tuple(level_output.shape))
(1, 17, 46, 46)
(1, 17, 46, 46)
(1, 17, 46, 46)
(1, 17, 46, 46)
(1, 17, 46, 46)
(1, 17, 46, 46)
"""
def __init__(
self,
in_channels,
out_channels,
feat_channels=128,
middle_channels=32,
num_stages=6,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=[
dict(type='Normal', std=0.001, layer=['Conv2d']),
dict(type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm'])
],
):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__(init_cfg=init_cfg)
assert in_channels == 3
self.num_stages = num_stages
assert self.num_stages >= 1
self.stem = nn.Sequential(
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ConvModule(128, 32, 5, padding=2, norm_cfg=norm_cfg),
ConvModule(32, 512, 9, padding=4, norm_cfg=norm_cfg),
ConvModule(512, 512, 1, padding=0, norm_cfg=norm_cfg),
ConvModule(512, out_channels, 1, padding=0, act_cfg=None))
self.middle = nn.Sequential(
ConvModule(in_channels, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
ConvModule(128, 128, 9, padding=4, norm_cfg=norm_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
self.cpm_stages = nn.ModuleList([
CpmBlock(
middle_channels + out_channels,
channels=[feat_channels, feat_channels, feat_channels],
kernels=[11, 11, 11],
norm_cfg=norm_cfg) for _ in range(num_stages - 1)
])
self.middle_conv = nn.ModuleList([
nn.Sequential(
ConvModule(
128, middle_channels, 5, padding=2, norm_cfg=norm_cfg))
for _ in range(num_stages - 1)
])
self.out_convs = nn.ModuleList([
nn.Sequential(
ConvModule(
feat_channels,
feat_channels,
1,
padding=0,
norm_cfg=norm_cfg),
ConvModule(feat_channels, out_channels, 1, act_cfg=None))
for _ in range(num_stages - 1)
])
def forward(self, x):
"""Model forward function."""
stage1_out = self.stem(x)
middle_out = self.middle(x)
out_feats = []
out_feats.append(stage1_out)
for ind in range(self.num_stages - 1):
single_stage = self.cpm_stages[ind]
out_conv = self.out_convs[ind]
inp_feat = torch.cat(
[out_feats[-1], self.middle_conv[ind](middle_out)], 1)
cpm_feat = single_stage(inp_feat)
out_feat = out_conv(cpm_feat)
out_feats.append(out_feat)
return out_feats
|