esbatmop's picture
Update app.py
c3af549 verified
# c2-standard-8 spot 9ct/h
# sudo apt-get install git git-lfs pip cmake podman
# git lfs install
#conda
# wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# bash Miniconda3-latest-Linux-x86_64.sh
# conda create --name dev python=3.10
# conda activate dev
# conda create --name dev4 python=3.10
##########
# git clone https://huggingface.co/spaces/TobDeBer/Qwen-2-llamacpp
# pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# pip install huggingface_hub scikit-build-core llama-cpp-agent
#
import llama_cpp
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
hf_hub_download(
repo_id="liwu/liwu_forum_post_2.0",
filename="liwugpt.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="liwu/liwu_forum_post_2.0",
filename="liwugpt_q8_0.gguf",
local_dir="./models"
)
llm = None
llm_model = None
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.CHATML
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# for msn in history:
# user = {
# 'role': Roles.user,
# 'content': msn[0]
# }
# assistant = {
# 'role': Roles.assistant,
# 'content': msn[1]
# }
# messages.add_message(user)
# messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=True
)
outputs = ""
for output in stream:
outputs += output
print(f"{output}", flush=True)
yield outputs
description = """<p align="center">输入主贴内容,生成每个楼层的回复<br>
powered by MNBVC <br></p>
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'liwugpt.gguf',
'liwugpt_q8_0.gguf'
],
value="liwugpt_q8_0.gguf",
label="Model"
),
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
#retry_btn="Retry",
#undo_btn="Undo",
#clear_btn="Clear",
#submit_btn="Send",
title="里屋论坛回帖机器人",
description=description,
chatbot=gr.Chatbot(
scale=1,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()