File size: 4,334 Bytes
d0b32b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7266379
d0b32b9
 
 
 
 
 
7266379
d0b32b9
7266379
d0b32b9
9943f7f
 
d0b32b9
 
9442c67
 
 
 
 
 
d0b32b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e24c11
d0b32b9
 
 
 
 
 
 
 
 
 
 
e1bcef9
d0b32b9
7266379
d0b32b9
7266379
d0b32b9
 
 
 
 
e1bcef9
d0b32b9
 
 
 
 
 
 
 
 
 
 
524b433
 
 
 
 
 
 
 
 
 
 
d0b32b9
 
 
 
 
 
524b433
7266379
 
d0b32b9
 
 
c3af549
d0b32b9
 
1e24c11
4d25056
d0b32b9
 
 
 
 
 
9442c67
 
d0b32b9
9442c67
d0b32b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e24c11
d0b32b9
 
 
 
 
 
7266379
d0b32b9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# c2-standard-8		spot 9ct/h
# sudo apt-get install git git-lfs pip cmake podman
# git lfs install
#conda
# wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# bash Miniconda3-latest-Linux-x86_64.sh
# conda create --name dev python=3.10 
# conda activate dev
# conda create --name dev4 python=3.10

##########
# git clone https://huggingface.co/spaces/TobDeBer/Qwen-2-llamacpp
# pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# pip install huggingface_hub scikit-build-core llama-cpp-agent
# 
import llama_cpp
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

hf_hub_download(
    repo_id="liwu/liwu_forum_post_2.0",
    filename="liwugpt.gguf",
    local_dir="./models"
)

hf_hub_download(
    repo_id="liwu/liwu_forum_post_2.0",
    filename="liwugpt_q8_0.gguf",
    local_dir="./models"
)


llm = None
llm_model = None

def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.CHATML

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    # for msn in history:
    #     user = {
    #         'role': Roles.user,
    #         'content': msn[0]
    #     }
    #     assistant = {
    #         'role': Roles.assistant,
    #         'content': msn[1]
    #     }
    #     messages.add_message(user)
    #     messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=True
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        print(f"{output}", flush=True)
        yield outputs

description = """<p align="center">输入主贴内容,生成每个楼层的回复<br>
powered by MNBVC <br></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'liwugpt.gguf',
                'liwugpt_q8_0.gguf'
            ],
            value="liwugpt_q8_0.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    #retry_btn="Retry",
    #undo_btn="Undo",
    #clear_btn="Clear",
    #submit_btn="Send",
    title="里屋论坛回帖机器人", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()