liuganghuggingface's picture
Update graph_decoder/diffusion_utils.py
fc7af13 verified
raw
history blame
20.1 kB
import os
import json
import yaml
import torch
import numpy as np
from torch.nn import functional as F
from torch_geometric.utils import to_dense_adj, to_dense_batch, remove_self_loops
from types import SimpleNamespace
def dict_to_namespace(d):
return SimpleNamespace(
**{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
)
# class DataInfos:
# def __init__(self, meta_filename="data.meta.json"):
# self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
# self.task_type = "gas_permeability"
# if os.path.exists(meta_filename):
# with open(meta_filename, "r") as f:
# meta_dict = json.load(f)
# else:
# raise FileNotFoundError(f"Meta file {meta_filename} not found.")
# self.active_atoms = meta_dict["active_atoms"]
# self.max_n_nodes = meta_dict["max_node"]
# self.original_max_n_nodes = meta_dict["max_node"]
# self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
# self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
# self.transition_E = torch.Tensor(meta_dict["transition_E"])
# self.atom_decoder = meta_dict["active_atoms"]
# node_types = torch.Tensor(meta_dict["atom_type_dist"])
# active_index = (node_types > 0).nonzero().squeeze()
# self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
# self.nodes_dist = DistributionNodes(self.n_nodes)
# self.active_index = active_index
# val_len = 3 * self.original_max_n_nodes - 2
# meta_val = torch.Tensor(meta_dict["valencies"])
# self.valency_distribution = torch.zeros(val_len)
# val_len = min(val_len, len(meta_val))
# self.valency_distribution[:val_len] = meta_val[:val_len]
# ## for all
# self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
# self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
# # self.input_dims = {"X": 11, "E": 5, "y": 5}
# # self.output_dims = {"X": 11, "E": 5, "y": 5}
def load_config(config_path, data_meta_info_path):
if not os.path.exists(config_path):
raise FileNotFoundError(f"Configuration file not found: {config_path}")
if not os.path.exists(data_meta_info_path):
raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")
with open(config_path, "r") as file:
cfg_dict = yaml.safe_load(file)
cfg = dict_to_namespace(cfg_dict)
data_info = DataInfos(data_meta_info_path)
return cfg, data_info
# #### graph utils
class PlaceHolder:
def __init__(self, X, E, y):
self.X = X
self.E = E
self.y = y
def type_as(self, x: torch.Tensor, categorical: bool = False):
"""Changes the device and dtype of X, E, y."""
self.X = self.X.type_as(x)
self.E = self.E.type_as(x)
if categorical:
self.y = self.y.type_as(x)
return self
def mask(self, node_mask, collapse=False):
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
if collapse:
self.X = torch.argmax(self.X, dim=-1)
self.E = torch.argmax(self.E, dim=-1)
self.X[node_mask == 0] = -1
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
else:
self.X = self.X * x_mask
self.E = self.E * e_mask1 * e_mask2
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
return self
# def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
# X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes)
# # node_mask = node_mask.float()
# edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
# if max_num_nodes is None:
# max_num_nodes = X.size(1)
# E = to_dense_adj(
# edge_index=edge_index,
# batch=batch,
# edge_attr=edge_attr,
# max_num_nodes=max_num_nodes,
# )
# E = encode_no_edge(E)
# return PlaceHolder(X=X, E=E, y=None), node_mask
# def encode_no_edge(E):
# assert len(E.shape) == 4
# if E.shape[-1] == 0:
# return E
# no_edge = torch.sum(E, dim=3) == 0
# first_elt = E[:, :, :, 0]
# first_elt[no_edge] = 1
# E[:, :, :, 0] = first_elt
# diag = (
# torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
# )
# E[diag] = 0
# return E
# #### diffusion utils
# class DistributionNodes:
# def __init__(self, histogram):
# """Compute the distribution of the number of nodes in the dataset, and sample from this distribution.
# historgram: dict. The keys are num_nodes, the values are counts
# """
# if type(histogram) == dict:
# max_n_nodes = max(histogram.keys())
# prob = torch.zeros(max_n_nodes + 1)
# for num_nodes, count in histogram.items():
# prob[num_nodes] = count
# else:
# prob = histogram
# self.prob = prob / prob.sum()
# self.m = torch.distributions.Categorical(prob)
# def sample_n(self, n_samples, device):
# idx = self.m.sample((n_samples,))
# return idx.to(device)
# def log_prob(self, batch_n_nodes):
# assert len(batch_n_nodes.size()) == 1
# p = self.prob.to(batch_n_nodes.device)
# probas = p[batch_n_nodes]
# log_p = torch.log(probas + 1e-30)
# return log_p
# class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
# def __init__(self, noise_schedule, timesteps):
# super(PredefinedNoiseScheduleDiscrete, self).__init__()
# self.timesteps = timesteps
# betas = cosine_beta_schedule_discrete(timesteps)
# self.register_buffer("betas", torch.from_numpy(betas).float())
# # 0.9999
# self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)
# log_alpha = torch.log(self.alphas)
# log_alpha_bar = torch.cumsum(log_alpha, dim=0)
# self.alphas_bar = torch.exp(log_alpha_bar)
# def forward(self, t_normalized=None, t_int=None):
# assert int(t_normalized is None) + int(t_int is None) == 1
# if t_int is None:
# t_int = torch.round(t_normalized * self.timesteps)
# self.betas = self.betas.type_as(t_int)
# return self.betas[t_int.long()]
# def get_alpha_bar(self, t_normalized=None, t_int=None):
# assert int(t_normalized is None) + int(t_int is None) == 1
# if t_int is None:
# t_int = torch.round(t_normalized * self.timesteps)
# self.alphas_bar = self.alphas_bar.type_as(t_int)
# return self.alphas_bar[t_int.long()]
# # class DiscreteUniformTransition:
# # def __init__(self, x_classes: int, e_classes: int, y_classes: int):
# # self.X_classes = x_classes
# # self.E_classes = e_classes
# # self.y_classes = y_classes
# # self.u_x = torch.ones(1, self.X_classes, self.X_classes)
# # if self.X_classes > 0:
# # self.u_x = self.u_x / self.X_classes
# # self.u_e = torch.ones(1, self.E_classes, self.E_classes)
# # if self.E_classes > 0:
# # self.u_e = self.u_e / self.E_classes
# # self.u_y = torch.ones(1, self.y_classes, self.y_classes)
# # if self.y_classes > 0:
# # self.u_y = self.u_y / self.y_classes
# # def get_Qt(self, beta_t, device, X=None, flatten_e=None):
# # """Returns one-step transition matrices for X and E, from step t - 1 to step t.
# # Qt = (1 - beta_t) * I + beta_t / K
# # beta_t: (bs) noise level between 0 and 1
# # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
# # """
# # beta_t = beta_t.unsqueeze(1)
# # beta_t = beta_t.to(device)
# # self.u_x = self.u_x.to(device)
# # self.u_e = self.u_e.to(device)
# # self.u_y = self.u_y.to(device)
# # q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(
# # self.X_classes, device=device
# # ).unsqueeze(0)
# # q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(
# # self.E_classes, device=device
# # ).unsqueeze(0)
# # q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(
# # self.y_classes, device=device
# # ).unsqueeze(0)
# # return PlaceHolder(X=q_x, E=q_e, y=q_y)
# # def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
# # """Returns t-step transition matrices for X and E, from step 0 to step t.
# # Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K
# # alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t.
# # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
# # """
# # alpha_bar_t = alpha_bar_t.unsqueeze(1)
# # alpha_bar_t = alpha_bar_t.to(device)
# # self.u_x = self.u_x.to(device)
# # self.u_e = self.u_e.to(device)
# # self.u_y = self.u_y.to(device)
# # q_x = (
# # alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0)
# # + (1 - alpha_bar_t) * self.u_x
# # )
# # q_e = (
# # alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0)
# # + (1 - alpha_bar_t) * self.u_e
# # )
# # q_y = (
# # alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0)
# # + (1 - alpha_bar_t) * self.u_y
# # )
# # return PlaceHolder(X=q_x, E=q_e, y=q_y)
# class MarginalTransition:
# def __init__(
# self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes
# ):
# self.X_classes = len(x_marginals)
# self.E_classes = len(e_marginals)
# self.y_classes = y_classes
# self.x_marginals = x_marginals # Dx
# self.e_marginals = e_marginals # Dx, De
# self.xe_conditions = xe_conditions
# # print('e_marginals.dtype', e_marginals.dtype)
# # print('x_marginals.dtype', x_marginals.dtype)
# # print('xe_conditions.dtype', xe_conditions.dtype)
# self.u_x = (
# x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
# ) # 1, Dx, Dx
# self.u_e = (
# e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
# ) # 1, De, De
# self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De
# self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx
# self.u = self.get_union_transition(
# self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes
# ) # 1, Dx + n*De, Dx + n*De
# def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
# u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de)
# u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de)
# u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx)
# u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de)
# u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de)
# u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de)
# return u
# def index_edge_margin(self, X, q_e, n_bond=5):
# # q_e: (bs, dx, de) --> (bs, n, de)
# bs, n, n_atom = X.shape
# node_indices = X.argmax(-1) # (bs, n)
# ind = node_indices[:, :, None].expand(bs, n, n_bond)
# q_e = torch.gather(q_e, 1, ind)
# return q_e
# def get_Qt(self, beta_t, device):
# """Returns one-step transition matrices for X and E, from step t - 1 to step t.
# Qt = (1 - beta_t) * I + beta_t / K
# beta_t: (bs)
# returns: q (bs, d0, d0)
# """
# bs = beta_t.size(0)
# d0 = self.u.size(-1)
# self.u = self.u.to(device)
# u = self.u.expand(bs, d0, d0)
# beta_t = beta_t.to(device)
# beta_t = beta_t.view(bs, 1, 1)
# q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
# return PlaceHolder(X=q, E=None, y=None)
# def get_Qt_bar(self, alpha_bar_t, device):
# """Returns t-step transition matrices for X and E, from step 0 to step t.
# Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
# alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
# returns: q (bs, d0, d0)
# """
# bs = alpha_bar_t.size(0)
# d0 = self.u.size(-1)
# alpha_bar_t = alpha_bar_t.to(device)
# alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
# self.u = self.u.to(device)
# q = (
# alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
# + (1 - alpha_bar_t) * self.u
# )
# return PlaceHolder(X=q, E=None, y=None)
# def sum_except_batch(x):
# return x.reshape(x.size(0), -1).sum(dim=-1)
# def assert_correctly_masked(variable, node_mask):
# assert (
# variable * (1 - node_mask.long())
# ).abs().max().item() < 1e-4, "Variables not masked properly."
# def cosine_beta_schedule_discrete(timesteps, s=0.008):
# """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ."""
# steps = timesteps + 2
# x = np.linspace(0, steps, steps)
# alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
# alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
# alphas = alphas_cumprod[1:] / alphas_cumprod[:-1]
# betas = 1 - alphas
# return betas.squeeze()
# def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True):
# """Sample features from multinomial distribution with given probabilities (probX, probE, proby)
# :param probX: bs, n, dx_out node features
# :param probE: bs, n, n, de_out edge features
# :param proby: bs, dy_out global features.
# """
# bs, n, _ = probX.shape
# # Noise X
# # The masked rows should define probability distributions as well
# probX[~node_mask] = 1 / probX.shape[-1]
# # Flatten the probability tensor to sample with multinomial
# probX = probX.reshape(bs * n, -1) # (bs * n, dx_out)
# # Sample X
# probX = probX.clamp_min(1e-5)
# probX = probX / probX.sum(dim=-1, keepdim=True)
# X_t = probX.multinomial(1) # (bs * n, 1)
# X_t = X_t.reshape(bs, n) # (bs, n)
# # Noise E
# # The masked rows should define probability distributions as well
# inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
# diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)
# probE[inverse_edge_mask] = 1 / probE.shape[-1]
# probE[diag_mask.bool()] = 1 / probE.shape[-1]
# probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out)
# probE = probE.clamp_min(1e-5)
# probE = probE / probE.sum(dim=-1, keepdim=True)
# # Sample E
# E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n)
# E_t = torch.triu(E_t, diagonal=1)
# E_t = E_t + torch.transpose(E_t, 1, 2)
# return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))
# def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
# # Add a small value everywhere to avoid nans
# pred_X = pred_X.clamp_min(1e-5)
# pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)
# pred_E = pred_E.clamp_min(1e-5)
# pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)
# # Set masked rows to arbitrary distributions, so it doesn't contribute to loss
# row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device)
# row_E = torch.zeros(
# true_E.size(-1), dtype=true_E.dtype, device=true_E.device
# ).clamp_min(1e-5)
# row_E[0] = 1.0
# diag_mask = ~torch.eye(
# node_mask.size(1), device=node_mask.device, dtype=torch.bool
# ).unsqueeze(0)
# true_X[~node_mask] = row_X
# true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
# pred_X[~node_mask] = row_X.type_as(pred_X)
# pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = (
# row_E.type_as(pred_E)
# )
# return true_X, true_E, pred_X, pred_E
# def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim):
# bs, n, d = X.shape
# Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d)
# left_term = X_t @ Qt_X_T # (bs, N, d)
# right_term = X @ Qsb.X # (bs, N, d)
# numerator = left_term * right_term # (bs, N, d)
# denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d)
# denominator = denominator * X_t
# num_X = numerator[:, :, :X_dim]
# num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1)
# deno_X = denominator[:, :, :X_dim]
# deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1)
# denominator = denominator.unsqueeze(-1) # (bs, N, 1)
# deno_X = deno_X.sum(dim=-1, keepdim=True)
# deno_E = deno_E.sum(dim=-1, keepdim=True)
# deno_X[deno_X == 0.0] = 1
# deno_E[deno_E == 0.0] = 1
# prob_X = num_X / deno_X
# prob_E = num_E / deno_E
# prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True)
# prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True)
# return PlaceHolder(X=prob_X, E=prob_E, y=None)
# def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb):
# """M: X or E
# Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
# X_t: bs, n, dt or bs, n, n, dt
# Qt: bs, d_t-1, dt
# Qsb: bs, d0, d_t-1
# Qtb: bs, d0, dt.
# """
# Qt_T = Qt.transpose(-1, -2) # bs, N, dt
# assert Qt.dim() == 3
# left_term = X_t @ Qt_T # bs, N, d_t-1
# right_term = predX_0 @ Qsb
# numerator = left_term * right_term # bs, N, d_t-1
# denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N
# denominator = denominator.transpose(-1, -2) # bs, N, d0
# return numerator / denominator.clamp_min(1e-5)
# def reverse_tensor(x):
# return x[torch.arange(x.size(0) - 1, -1, -1)]
# def sample_discrete_feature_noise(limit_dist, node_mask):
# """Sample from the limit distribution of the diffusion process"""
# bs, n_max = node_mask.shape
# x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
# x_limit = x_limit.to(node_mask.device)
# U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
# U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit)
# e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
# U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
# U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit)
# U_X = U_X.to(node_mask.device)
# U_E = U_E.to(node_mask.device)
# # Get upper triangular part of edge noise, without main diagonal
# upper_triangular_mask = torch.zeros_like(U_E)
# indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
# upper_triangular_mask[:, indices[0], indices[1], :] = 1
# U_E = U_E * upper_triangular_mask
# U_E = U_E + torch.transpose(U_E, 1, 2)
# assert (U_E == torch.transpose(U_E, 1, 2)).all()
# return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask)
# def index_QE(X, q_e, n_bond=5):
# bs, n, n_atom = X.shape
# node_indices = X.argmax(-1) # (bs, n)
# exp_ind1 = node_indices[:, :, None, None, None].expand(
# bs, n, n_atom, n_bond, n_bond
# )
# exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond)
# q_e = torch.gather(q_e, 1, exp_ind1)
# q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond)
# node_mask = X.sum(-1) != 0
# no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :]
# q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e)
# return q_e