liuganghuggingface commited on
Commit
fc7af13
·
verified ·
1 Parent(s): 96c15b8

Update graph_decoder/diffusion_utils.py

Browse files
Files changed (1) hide show
  1. graph_decoder/diffusion_utils.py +71 -71
graph_decoder/diffusion_utils.py CHANGED
@@ -13,88 +13,88 @@ def dict_to_namespace(d):
13
  **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
14
  )
15
 
16
- class DataInfos:
17
- def __init__(self, meta_filename="data.meta.json"):
18
- self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
19
- self.task_type = "gas_permeability"
20
- if os.path.exists(meta_filename):
21
- with open(meta_filename, "r") as f:
22
- meta_dict = json.load(f)
23
- else:
24
- raise FileNotFoundError(f"Meta file {meta_filename} not found.")
25
 
26
- self.active_atoms = meta_dict["active_atoms"]
27
- self.max_n_nodes = meta_dict["max_node"]
28
- self.original_max_n_nodes = meta_dict["max_node"]
29
- self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
30
- self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
31
- self.transition_E = torch.Tensor(meta_dict["transition_E"])
32
 
33
- self.atom_decoder = meta_dict["active_atoms"]
34
- node_types = torch.Tensor(meta_dict["atom_type_dist"])
35
- active_index = (node_types > 0).nonzero().squeeze()
36
- self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
37
- self.nodes_dist = DistributionNodes(self.n_nodes)
38
- self.active_index = active_index
39
 
40
- val_len = 3 * self.original_max_n_nodes - 2
41
- meta_val = torch.Tensor(meta_dict["valencies"])
42
- self.valency_distribution = torch.zeros(val_len)
43
- val_len = min(val_len, len(meta_val))
44
- self.valency_distribution[:val_len] = meta_val[:val_len]
45
- ## for all
46
- self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
47
- self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
48
- # self.input_dims = {"X": 11, "E": 5, "y": 5}
49
- # self.output_dims = {"X": 11, "E": 5, "y": 5}
50
 
51
- # def load_config(config_path, data_meta_info_path):
52
- # if not os.path.exists(config_path):
53
- # raise FileNotFoundError(f"Configuration file not found: {config_path}")
54
 
55
- # if not os.path.exists(data_meta_info_path):
56
- # raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")
57
 
58
- # with open(config_path, "r") as file:
59
- # cfg_dict = yaml.safe_load(file)
60
 
61
- # cfg = dict_to_namespace(cfg_dict)
62
 
63
- # data_info = DataInfos(data_meta_info_path)
64
- # return cfg, data_info
65
 
66
 
67
  # #### graph utils
68
- # class PlaceHolder:
69
- # def __init__(self, X, E, y):
70
- # self.X = X
71
- # self.E = E
72
- # self.y = y
73
-
74
- # def type_as(self, x: torch.Tensor, categorical: bool = False):
75
- # """Changes the device and dtype of X, E, y."""
76
- # self.X = self.X.type_as(x)
77
- # self.E = self.E.type_as(x)
78
- # if categorical:
79
- # self.y = self.y.type_as(x)
80
- # return self
81
-
82
- # def mask(self, node_mask, collapse=False):
83
- # x_mask = node_mask.unsqueeze(-1) # bs, n, 1
84
- # e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
85
- # e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
86
-
87
- # if collapse:
88
- # self.X = torch.argmax(self.X, dim=-1)
89
- # self.E = torch.argmax(self.E, dim=-1)
90
-
91
- # self.X[node_mask == 0] = -1
92
- # self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
93
- # else:
94
- # self.X = self.X * x_mask
95
- # self.E = self.E * e_mask1 * e_mask2
96
- # assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
97
- # return self
98
 
99
 
100
  # def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
 
13
  **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
14
  )
15
 
16
+ # class DataInfos:
17
+ # def __init__(self, meta_filename="data.meta.json"):
18
+ # self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
19
+ # self.task_type = "gas_permeability"
20
+ # if os.path.exists(meta_filename):
21
+ # with open(meta_filename, "r") as f:
22
+ # meta_dict = json.load(f)
23
+ # else:
24
+ # raise FileNotFoundError(f"Meta file {meta_filename} not found.")
25
 
26
+ # self.active_atoms = meta_dict["active_atoms"]
27
+ # self.max_n_nodes = meta_dict["max_node"]
28
+ # self.original_max_n_nodes = meta_dict["max_node"]
29
+ # self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
30
+ # self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
31
+ # self.transition_E = torch.Tensor(meta_dict["transition_E"])
32
 
33
+ # self.atom_decoder = meta_dict["active_atoms"]
34
+ # node_types = torch.Tensor(meta_dict["atom_type_dist"])
35
+ # active_index = (node_types > 0).nonzero().squeeze()
36
+ # self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
37
+ # self.nodes_dist = DistributionNodes(self.n_nodes)
38
+ # self.active_index = active_index
39
 
40
+ # val_len = 3 * self.original_max_n_nodes - 2
41
+ # meta_val = torch.Tensor(meta_dict["valencies"])
42
+ # self.valency_distribution = torch.zeros(val_len)
43
+ # val_len = min(val_len, len(meta_val))
44
+ # self.valency_distribution[:val_len] = meta_val[:val_len]
45
+ # ## for all
46
+ # self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
47
+ # self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
48
+ # # self.input_dims = {"X": 11, "E": 5, "y": 5}
49
+ # # self.output_dims = {"X": 11, "E": 5, "y": 5}
50
 
51
+ def load_config(config_path, data_meta_info_path):
52
+ if not os.path.exists(config_path):
53
+ raise FileNotFoundError(f"Configuration file not found: {config_path}")
54
 
55
+ if not os.path.exists(data_meta_info_path):
56
+ raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")
57
 
58
+ with open(config_path, "r") as file:
59
+ cfg_dict = yaml.safe_load(file)
60
 
61
+ cfg = dict_to_namespace(cfg_dict)
62
 
63
+ data_info = DataInfos(data_meta_info_path)
64
+ return cfg, data_info
65
 
66
 
67
  # #### graph utils
68
+ class PlaceHolder:
69
+ def __init__(self, X, E, y):
70
+ self.X = X
71
+ self.E = E
72
+ self.y = y
73
+
74
+ def type_as(self, x: torch.Tensor, categorical: bool = False):
75
+ """Changes the device and dtype of X, E, y."""
76
+ self.X = self.X.type_as(x)
77
+ self.E = self.E.type_as(x)
78
+ if categorical:
79
+ self.y = self.y.type_as(x)
80
+ return self
81
+
82
+ def mask(self, node_mask, collapse=False):
83
+ x_mask = node_mask.unsqueeze(-1) # bs, n, 1
84
+ e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
85
+ e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
86
+
87
+ if collapse:
88
+ self.X = torch.argmax(self.X, dim=-1)
89
+ self.E = torch.argmax(self.E, dim=-1)
90
+
91
+ self.X[node_mask == 0] = -1
92
+ self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
93
+ else:
94
+ self.X = self.X * x_mask
95
+ self.E = self.E * e_mask1 * e_mask2
96
+ assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
97
+ return self
98
 
99
 
100
  # def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):