Update graph_decoder/diffusion_utils.py
Browse files- graph_decoder/diffusion_utils.py +71 -71
graph_decoder/diffusion_utils.py
CHANGED
@@ -13,88 +13,88 @@ def dict_to_namespace(d):
|
|
13 |
**{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
|
14 |
)
|
15 |
|
16 |
-
class DataInfos:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
|
67 |
# #### graph utils
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
|
100 |
# def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
|
|
|
13 |
**{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
|
14 |
)
|
15 |
|
16 |
+
# class DataInfos:
|
17 |
+
# def __init__(self, meta_filename="data.meta.json"):
|
18 |
+
# self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
|
19 |
+
# self.task_type = "gas_permeability"
|
20 |
+
# if os.path.exists(meta_filename):
|
21 |
+
# with open(meta_filename, "r") as f:
|
22 |
+
# meta_dict = json.load(f)
|
23 |
+
# else:
|
24 |
+
# raise FileNotFoundError(f"Meta file {meta_filename} not found.")
|
25 |
|
26 |
+
# self.active_atoms = meta_dict["active_atoms"]
|
27 |
+
# self.max_n_nodes = meta_dict["max_node"]
|
28 |
+
# self.original_max_n_nodes = meta_dict["max_node"]
|
29 |
+
# self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
|
30 |
+
# self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
|
31 |
+
# self.transition_E = torch.Tensor(meta_dict["transition_E"])
|
32 |
|
33 |
+
# self.atom_decoder = meta_dict["active_atoms"]
|
34 |
+
# node_types = torch.Tensor(meta_dict["atom_type_dist"])
|
35 |
+
# active_index = (node_types > 0).nonzero().squeeze()
|
36 |
+
# self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
|
37 |
+
# self.nodes_dist = DistributionNodes(self.n_nodes)
|
38 |
+
# self.active_index = active_index
|
39 |
|
40 |
+
# val_len = 3 * self.original_max_n_nodes - 2
|
41 |
+
# meta_val = torch.Tensor(meta_dict["valencies"])
|
42 |
+
# self.valency_distribution = torch.zeros(val_len)
|
43 |
+
# val_len = min(val_len, len(meta_val))
|
44 |
+
# self.valency_distribution[:val_len] = meta_val[:val_len]
|
45 |
+
# ## for all
|
46 |
+
# self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
|
47 |
+
# self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
|
48 |
+
# # self.input_dims = {"X": 11, "E": 5, "y": 5}
|
49 |
+
# # self.output_dims = {"X": 11, "E": 5, "y": 5}
|
50 |
|
51 |
+
def load_config(config_path, data_meta_info_path):
|
52 |
+
if not os.path.exists(config_path):
|
53 |
+
raise FileNotFoundError(f"Configuration file not found: {config_path}")
|
54 |
|
55 |
+
if not os.path.exists(data_meta_info_path):
|
56 |
+
raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")
|
57 |
|
58 |
+
with open(config_path, "r") as file:
|
59 |
+
cfg_dict = yaml.safe_load(file)
|
60 |
|
61 |
+
cfg = dict_to_namespace(cfg_dict)
|
62 |
|
63 |
+
data_info = DataInfos(data_meta_info_path)
|
64 |
+
return cfg, data_info
|
65 |
|
66 |
|
67 |
# #### graph utils
|
68 |
+
class PlaceHolder:
|
69 |
+
def __init__(self, X, E, y):
|
70 |
+
self.X = X
|
71 |
+
self.E = E
|
72 |
+
self.y = y
|
73 |
+
|
74 |
+
def type_as(self, x: torch.Tensor, categorical: bool = False):
|
75 |
+
"""Changes the device and dtype of X, E, y."""
|
76 |
+
self.X = self.X.type_as(x)
|
77 |
+
self.E = self.E.type_as(x)
|
78 |
+
if categorical:
|
79 |
+
self.y = self.y.type_as(x)
|
80 |
+
return self
|
81 |
+
|
82 |
+
def mask(self, node_mask, collapse=False):
|
83 |
+
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
|
84 |
+
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
|
85 |
+
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
|
86 |
+
|
87 |
+
if collapse:
|
88 |
+
self.X = torch.argmax(self.X, dim=-1)
|
89 |
+
self.E = torch.argmax(self.E, dim=-1)
|
90 |
+
|
91 |
+
self.X[node_mask == 0] = -1
|
92 |
+
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
|
93 |
+
else:
|
94 |
+
self.X = self.X * x_mask
|
95 |
+
self.E = self.E * e_mask1 * e_mask2
|
96 |
+
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
|
97 |
+
return self
|
98 |
|
99 |
|
100 |
# def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
|