Whatever-this-is / lmmvibes /utils /persistent_storage_example.py
Lisa Dunlap
Add persistent storage support for Hugging Face Spaces - Enhanced app.py with automatic persistent storage detection - Added comprehensive persistent storage utilities - Added documentation and examples - Automatic HF_HOME and cache configuration for /data directory
f850bde
raw
history blame
7.88 kB
"""
Example usage of persistent storage utilities for Hugging Face Spaces.
This file demonstrates how to use the persistent storage utilities
for saving and loading data in Hugging Face Spaces.
"""
import json
import pandas as pd
from pathlib import Path
from .persistent_storage import (
get_persistent_data_dir,
get_cache_dir,
get_hf_home_dir,
save_data_to_persistent,
load_data_from_persistent,
save_uploaded_file,
list_persistent_files,
delete_persistent_file,
is_persistent_storage_available,
get_storage_info
)
def example_save_results(results_data: dict, experiment_name: str):
"""Example: Save pipeline results to persistent storage.
Args:
results_data: Dictionary containing pipeline results
experiment_name: Name of the experiment
"""
if not is_persistent_storage_available():
print("⚠️ Persistent storage not available - skipping save")
return None
# Save results as JSON
results_json = json.dumps(results_data, indent=2)
results_bytes = results_json.encode('utf-8')
filename = f"{experiment_name}_results.json"
saved_path = save_data_to_persistent(
data=results_bytes,
filename=filename,
subdirectory="experiments"
)
if saved_path:
print(f"βœ… Saved results to: {saved_path}")
return saved_path
else:
print("❌ Failed to save results")
return None
def example_load_results(experiment_name: str):
"""Example: Load pipeline results from persistent storage.
Args:
experiment_name: Name of the experiment
Returns:
Dictionary containing the loaded results or None
"""
filename = f"{experiment_name}_results.json"
results_bytes = load_data_from_persistent(
filename=filename,
subdirectory="experiments"
)
if results_bytes:
results_data = json.loads(results_bytes.decode('utf-8'))
print(f"βœ… Loaded results from: {filename}")
return results_data
else:
print(f"❌ No results found for: {filename}")
return None
def example_save_dataframe(df: pd.DataFrame, filename: str):
"""Example: Save a pandas DataFrame to persistent storage.
Args:
df: DataFrame to save
filename: Name of the file (with .parquet extension)
"""
if not is_persistent_storage_available():
print("⚠️ Persistent storage not available - skipping save")
return None
# Convert DataFrame to parquet bytes
try:
parquet_bytes = df.to_parquet()
saved_path = save_data_to_persistent(
data=parquet_bytes,
filename=filename,
subdirectory="dataframes"
)
if saved_path:
print(f"βœ… Saved DataFrame to: {saved_path}")
return saved_path
else:
print("❌ Failed to save DataFrame")
return None
except Exception as e:
print(f"❌ Error saving DataFrame: {e}")
return None
def example_list_saved_files():
"""Example: List all files saved in persistent storage."""
if not is_persistent_storage_available():
print("⚠️ Persistent storage not available")
return []
print("πŸ“ Files in persistent storage:")
# List all files
all_files = list_persistent_files()
if all_files:
for file in all_files:
print(f" - {file.name}")
else:
print(" No files found")
# List experiment files
experiment_files = list_persistent_files(subdirectory="experiments", pattern="*.json")
if experiment_files:
print("\nπŸ”¬ Experiment files:")
for file in experiment_files:
print(f" - {file.name}")
# List dataframe files
dataframe_files = list_persistent_files(subdirectory="dataframes", pattern="*.parquet")
if dataframe_files:
print("\nπŸ“Š DataFrame files:")
for file in dataframe_files:
print(f" - {file.name}")
return all_files
def example_storage_cleanup(days_old: int = 30):
"""Example: Clean up old files from persistent storage.
Args:
days_old: Delete files older than this many days
"""
if not is_persistent_storage_available():
print("⚠️ Persistent storage not available")
return
import time
from datetime import datetime, timedelta
cutoff_time = time.time() - (days_old * 24 * 60 * 60)
print(f"🧹 Cleaning up files older than {days_old} days...")
# List all files and check their modification time
all_files = list_persistent_files()
deleted_count = 0
for file in all_files:
if file.stat().st_mtime < cutoff_time:
if delete_persistent_file(file.name):
print(f"πŸ—‘οΈ Deleted: {file.name}")
deleted_count += 1
print(f"βœ… Cleanup complete - deleted {deleted_count} files")
def example_storage_info():
"""Example: Display information about persistent storage."""
info = get_storage_info()
print("πŸ“Š Persistent Storage Information:")
print(f" Available: {info['persistent_available']}")
if info['persistent_available']:
print(f" Data directory: {info['data_dir']}")
print(f" Cache directory: {info['cache_dir']}")
print(f" HF Home: {info['hf_home']}")
if info['storage_paths']:
print(f" Total storage: {info['storage_paths']['total_gb']:.1f}GB")
print(f" Used storage: {info['storage_paths']['used_gb']:.1f}GB")
print(f" Free storage: {info['storage_paths']['free_gb']:.1f}GB")
# Calculate usage percentage
usage_pct = (info['storage_paths']['used_gb'] / info['storage_paths']['total_gb']) * 100
print(f" Usage: {usage_pct:.1f}%")
# Example usage in a Gradio app
def example_gradio_integration():
"""Example: How to integrate persistent storage with Gradio."""
def save_uploaded_data(uploaded_file):
"""Save a file uploaded through Gradio."""
if uploaded_file:
saved_path = save_uploaded_file(uploaded_file, "user_upload.txt")
if saved_path:
return f"βœ… File saved to persistent storage: {saved_path.name}"
else:
return "❌ Failed to save file - persistent storage not available"
return "⚠️ No file uploaded"
def load_user_data():
"""Load previously uploaded data."""
data_bytes = load_data_from_persistent("user_upload.txt")
if data_bytes:
return data_bytes.decode('utf-8')
return "No data found"
# This would be used in a Gradio interface like:
# import gradio as gr
#
# with gr.Blocks() as demo:
# file_input = gr.File(label="Upload file")
# upload_btn = gr.Button("Save to persistent storage")
# download_btn = gr.Button("Load from persistent storage")
#
# upload_btn.click(save_uploaded_data, inputs=[file_input])
# download_btn.click(load_user_data)
if __name__ == "__main__":
# Run examples
print("πŸ” Persistent Storage Examples")
print("=" * 40)
example_storage_info()
print()
example_list_saved_files()
print()
# Example: Save some test data
test_data = {"experiment": "test", "results": [1, 2, 3], "timestamp": "2024-01-01"}
example_save_results(test_data, "test_experiment")
print()
# Example: Load the test data
loaded_data = example_load_results("test_experiment")
if loaded_data:
print(f"πŸ“Š Loaded data: {loaded_data}")
print()
# Example: List files again
example_list_saved_files()