File size: 7,876 Bytes
f850bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
Example usage of persistent storage utilities for Hugging Face Spaces.

This file demonstrates how to use the persistent storage utilities
for saving and loading data in Hugging Face Spaces.
"""

import json
import pandas as pd
from pathlib import Path

from .persistent_storage import (
    get_persistent_data_dir,
    get_cache_dir,
    get_hf_home_dir,
    save_data_to_persistent,
    load_data_from_persistent,
    save_uploaded_file,
    list_persistent_files,
    delete_persistent_file,
    is_persistent_storage_available,
    get_storage_info
)


def example_save_results(results_data: dict, experiment_name: str):
    """Example: Save pipeline results to persistent storage.
    
    Args:
        results_data: Dictionary containing pipeline results
        experiment_name: Name of the experiment
    """
    if not is_persistent_storage_available():
        print("⚠️  Persistent storage not available - skipping save")
        return None
    
    # Save results as JSON
    results_json = json.dumps(results_data, indent=2)
    results_bytes = results_json.encode('utf-8')
    
    filename = f"{experiment_name}_results.json"
    saved_path = save_data_to_persistent(
        data=results_bytes,
        filename=filename,
        subdirectory="experiments"
    )
    
    if saved_path:
        print(f"βœ… Saved results to: {saved_path}")
        return saved_path
    else:
        print("❌ Failed to save results")
        return None


def example_load_results(experiment_name: str):
    """Example: Load pipeline results from persistent storage.
    
    Args:
        experiment_name: Name of the experiment
        
    Returns:
        Dictionary containing the loaded results or None
    """
    filename = f"{experiment_name}_results.json"
    results_bytes = load_data_from_persistent(
        filename=filename,
        subdirectory="experiments"
    )
    
    if results_bytes:
        results_data = json.loads(results_bytes.decode('utf-8'))
        print(f"βœ… Loaded results from: {filename}")
        return results_data
    else:
        print(f"❌ No results found for: {filename}")
        return None


def example_save_dataframe(df: pd.DataFrame, filename: str):
    """Example: Save a pandas DataFrame to persistent storage.
    
    Args:
        df: DataFrame to save
        filename: Name of the file (with .parquet extension)
    """
    if not is_persistent_storage_available():
        print("⚠️  Persistent storage not available - skipping save")
        return None
    
    # Convert DataFrame to parquet bytes
    try:
        parquet_bytes = df.to_parquet()
        saved_path = save_data_to_persistent(
            data=parquet_bytes,
            filename=filename,
            subdirectory="dataframes"
        )
        
        if saved_path:
            print(f"βœ… Saved DataFrame to: {saved_path}")
            return saved_path
        else:
            print("❌ Failed to save DataFrame")
            return None
    except Exception as e:
        print(f"❌ Error saving DataFrame: {e}")
        return None


def example_list_saved_files():
    """Example: List all files saved in persistent storage."""
    if not is_persistent_storage_available():
        print("⚠️  Persistent storage not available")
        return []
    
    print("πŸ“ Files in persistent storage:")
    
    # List all files
    all_files = list_persistent_files()
    if all_files:
        for file in all_files:
            print(f"  - {file.name}")
    else:
        print("  No files found")
    
    # List experiment files
    experiment_files = list_persistent_files(subdirectory="experiments", pattern="*.json")
    if experiment_files:
        print("\nπŸ”¬ Experiment files:")
        for file in experiment_files:
            print(f"  - {file.name}")
    
    # List dataframe files
    dataframe_files = list_persistent_files(subdirectory="dataframes", pattern="*.parquet")
    if dataframe_files:
        print("\nπŸ“Š DataFrame files:")
        for file in dataframe_files:
            print(f"  - {file.name}")
    
    return all_files


def example_storage_cleanup(days_old: int = 30):
    """Example: Clean up old files from persistent storage.
    
    Args:
        days_old: Delete files older than this many days
    """
    if not is_persistent_storage_available():
        print("⚠️  Persistent storage not available")
        return
    
    import time
    from datetime import datetime, timedelta
    
    cutoff_time = time.time() - (days_old * 24 * 60 * 60)
    
    print(f"🧹 Cleaning up files older than {days_old} days...")
    
    # List all files and check their modification time
    all_files = list_persistent_files()
    deleted_count = 0
    
    for file in all_files:
        if file.stat().st_mtime < cutoff_time:
            if delete_persistent_file(file.name):
                print(f"πŸ—‘οΈ  Deleted: {file.name}")
                deleted_count += 1
    
    print(f"βœ… Cleanup complete - deleted {deleted_count} files")


def example_storage_info():
    """Example: Display information about persistent storage."""
    info = get_storage_info()
    
    print("πŸ“Š Persistent Storage Information:")
    print(f"  Available: {info['persistent_available']}")
    
    if info['persistent_available']:
        print(f"  Data directory: {info['data_dir']}")
        print(f"  Cache directory: {info['cache_dir']}")
        print(f"  HF Home: {info['hf_home']}")
        
        if info['storage_paths']:
            print(f"  Total storage: {info['storage_paths']['total_gb']:.1f}GB")
            print(f"  Used storage: {info['storage_paths']['used_gb']:.1f}GB")
            print(f"  Free storage: {info['storage_paths']['free_gb']:.1f}GB")
            
            # Calculate usage percentage
            usage_pct = (info['storage_paths']['used_gb'] / info['storage_paths']['total_gb']) * 100
            print(f"  Usage: {usage_pct:.1f}%")


# Example usage in a Gradio app
def example_gradio_integration():
    """Example: How to integrate persistent storage with Gradio."""
    
    def save_uploaded_data(uploaded_file):
        """Save a file uploaded through Gradio."""
        if uploaded_file:
            saved_path = save_uploaded_file(uploaded_file, "user_upload.txt")
            if saved_path:
                return f"βœ… File saved to persistent storage: {saved_path.name}"
            else:
                return "❌ Failed to save file - persistent storage not available"
        return "⚠️  No file uploaded"
    
    def load_user_data():
        """Load previously uploaded data."""
        data_bytes = load_data_from_persistent("user_upload.txt")
        if data_bytes:
            return data_bytes.decode('utf-8')
        return "No data found"
    
    # This would be used in a Gradio interface like:
    # import gradio as gr
    # 
    # with gr.Blocks() as demo:
    #     file_input = gr.File(label="Upload file")
    #     upload_btn = gr.Button("Save to persistent storage")
    #     download_btn = gr.Button("Load from persistent storage")
    #     
    #     upload_btn.click(save_uploaded_data, inputs=[file_input])
    #     download_btn.click(load_user_data)


if __name__ == "__main__":
    # Run examples
    print("πŸ” Persistent Storage Examples")
    print("=" * 40)
    
    example_storage_info()
    print()
    
    example_list_saved_files()
    print()
    
    # Example: Save some test data
    test_data = {"experiment": "test", "results": [1, 2, 3], "timestamp": "2024-01-01"}
    example_save_results(test_data, "test_experiment")
    print()
    
    # Example: Load the test data
    loaded_data = example_load_results("test_experiment")
    if loaded_data:
        print(f"πŸ“Š Loaded data: {loaded_data}")
    print()
    
    # Example: List files again
    example_list_saved_files()