Spaces:
Sleeping
Sleeping
File size: 7,876 Bytes
f850bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
"""
Example usage of persistent storage utilities for Hugging Face Spaces.
This file demonstrates how to use the persistent storage utilities
for saving and loading data in Hugging Face Spaces.
"""
import json
import pandas as pd
from pathlib import Path
from .persistent_storage import (
get_persistent_data_dir,
get_cache_dir,
get_hf_home_dir,
save_data_to_persistent,
load_data_from_persistent,
save_uploaded_file,
list_persistent_files,
delete_persistent_file,
is_persistent_storage_available,
get_storage_info
)
def example_save_results(results_data: dict, experiment_name: str):
"""Example: Save pipeline results to persistent storage.
Args:
results_data: Dictionary containing pipeline results
experiment_name: Name of the experiment
"""
if not is_persistent_storage_available():
print("β οΈ Persistent storage not available - skipping save")
return None
# Save results as JSON
results_json = json.dumps(results_data, indent=2)
results_bytes = results_json.encode('utf-8')
filename = f"{experiment_name}_results.json"
saved_path = save_data_to_persistent(
data=results_bytes,
filename=filename,
subdirectory="experiments"
)
if saved_path:
print(f"β
Saved results to: {saved_path}")
return saved_path
else:
print("β Failed to save results")
return None
def example_load_results(experiment_name: str):
"""Example: Load pipeline results from persistent storage.
Args:
experiment_name: Name of the experiment
Returns:
Dictionary containing the loaded results or None
"""
filename = f"{experiment_name}_results.json"
results_bytes = load_data_from_persistent(
filename=filename,
subdirectory="experiments"
)
if results_bytes:
results_data = json.loads(results_bytes.decode('utf-8'))
print(f"β
Loaded results from: {filename}")
return results_data
else:
print(f"β No results found for: {filename}")
return None
def example_save_dataframe(df: pd.DataFrame, filename: str):
"""Example: Save a pandas DataFrame to persistent storage.
Args:
df: DataFrame to save
filename: Name of the file (with .parquet extension)
"""
if not is_persistent_storage_available():
print("β οΈ Persistent storage not available - skipping save")
return None
# Convert DataFrame to parquet bytes
try:
parquet_bytes = df.to_parquet()
saved_path = save_data_to_persistent(
data=parquet_bytes,
filename=filename,
subdirectory="dataframes"
)
if saved_path:
print(f"β
Saved DataFrame to: {saved_path}")
return saved_path
else:
print("β Failed to save DataFrame")
return None
except Exception as e:
print(f"β Error saving DataFrame: {e}")
return None
def example_list_saved_files():
"""Example: List all files saved in persistent storage."""
if not is_persistent_storage_available():
print("β οΈ Persistent storage not available")
return []
print("π Files in persistent storage:")
# List all files
all_files = list_persistent_files()
if all_files:
for file in all_files:
print(f" - {file.name}")
else:
print(" No files found")
# List experiment files
experiment_files = list_persistent_files(subdirectory="experiments", pattern="*.json")
if experiment_files:
print("\n㪠Experiment files:")
for file in experiment_files:
print(f" - {file.name}")
# List dataframe files
dataframe_files = list_persistent_files(subdirectory="dataframes", pattern="*.parquet")
if dataframe_files:
print("\nπ DataFrame files:")
for file in dataframe_files:
print(f" - {file.name}")
return all_files
def example_storage_cleanup(days_old: int = 30):
"""Example: Clean up old files from persistent storage.
Args:
days_old: Delete files older than this many days
"""
if not is_persistent_storage_available():
print("β οΈ Persistent storage not available")
return
import time
from datetime import datetime, timedelta
cutoff_time = time.time() - (days_old * 24 * 60 * 60)
print(f"π§Ή Cleaning up files older than {days_old} days...")
# List all files and check their modification time
all_files = list_persistent_files()
deleted_count = 0
for file in all_files:
if file.stat().st_mtime < cutoff_time:
if delete_persistent_file(file.name):
print(f"ποΈ Deleted: {file.name}")
deleted_count += 1
print(f"β
Cleanup complete - deleted {deleted_count} files")
def example_storage_info():
"""Example: Display information about persistent storage."""
info = get_storage_info()
print("π Persistent Storage Information:")
print(f" Available: {info['persistent_available']}")
if info['persistent_available']:
print(f" Data directory: {info['data_dir']}")
print(f" Cache directory: {info['cache_dir']}")
print(f" HF Home: {info['hf_home']}")
if info['storage_paths']:
print(f" Total storage: {info['storage_paths']['total_gb']:.1f}GB")
print(f" Used storage: {info['storage_paths']['used_gb']:.1f}GB")
print(f" Free storage: {info['storage_paths']['free_gb']:.1f}GB")
# Calculate usage percentage
usage_pct = (info['storage_paths']['used_gb'] / info['storage_paths']['total_gb']) * 100
print(f" Usage: {usage_pct:.1f}%")
# Example usage in a Gradio app
def example_gradio_integration():
"""Example: How to integrate persistent storage with Gradio."""
def save_uploaded_data(uploaded_file):
"""Save a file uploaded through Gradio."""
if uploaded_file:
saved_path = save_uploaded_file(uploaded_file, "user_upload.txt")
if saved_path:
return f"β
File saved to persistent storage: {saved_path.name}"
else:
return "β Failed to save file - persistent storage not available"
return "β οΈ No file uploaded"
def load_user_data():
"""Load previously uploaded data."""
data_bytes = load_data_from_persistent("user_upload.txt")
if data_bytes:
return data_bytes.decode('utf-8')
return "No data found"
# This would be used in a Gradio interface like:
# import gradio as gr
#
# with gr.Blocks() as demo:
# file_input = gr.File(label="Upload file")
# upload_btn = gr.Button("Save to persistent storage")
# download_btn = gr.Button("Load from persistent storage")
#
# upload_btn.click(save_uploaded_data, inputs=[file_input])
# download_btn.click(load_user_data)
if __name__ == "__main__":
# Run examples
print("π Persistent Storage Examples")
print("=" * 40)
example_storage_info()
print()
example_list_saved_files()
print()
# Example: Save some test data
test_data = {"experiment": "test", "results": [1, 2, 3], "timestamp": "2024-01-01"}
example_save_results(test_data, "test_experiment")
print()
# Example: Load the test data
loaded_data = example_load_results("test_experiment")
if loaded_data:
print(f"π Loaded data: {loaded_data}")
print()
# Example: List files again
example_list_saved_files() |