File size: 4,761 Bytes
8fd0cd1
 
965fecf
 
51270f5
 
965fecf
8fd0cd1
 
51270f5
8fd0cd1
 
 
 
 
4928b51
 
 
 
 
 
 
 
8fd0cd1
 
 
 
790c473
9bf6989
 
790c473
 
 
 
 
 
 
 
 
 
 
 
 
8fd0cd1
 
 
 
790c473
8fd0cd1
 
9bf6989
 
8fd0cd1
 
 
0c6ce0e
8fd0cd1
 
 
 
 
 
 
 
 
 
0c6ce0e
 
 
790c473
 
 
 
 
 
 
 
 
 
 
 
 
 
0c6ce0e
 
8fd0cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
790c473
8fd0cd1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import numpy as np
import random

import spaces
import torch

from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev" , 
    torch_dtype=torch.bfloat16
).to("cuda")
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Redux-dev",
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer_2=pipe.tokenizer_2,
    torch_dtype=torch.bfloat16
).to("cuda")

@spaces.GPU
def infer(control_image, prompt, reference_scale= 0.03 , seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt)
    cond_size = 729
    hidden_size = 4096
    max_sequence_length = 512
    full_attention_size = max_sequence_length + hidden_size + cond_size
    attention_mask = torch.zeros(
        (full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
    )
    bias = torch.log(
        torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
    )
    attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
    joint_attention_kwargs=dict(attention_mask=attention_mask)
    images = pipe(
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator("cpu").manual_seed(seed),
        joint_attention_kwargs=joint_attention_kwargs,
        **pipe_prior_output,
    ).images[0]
    return images, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Redux [dev]
An adapter for FLUX [dev] to create image variations
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        with gr.Row():
            with gr.Column():
                    input_image = gr.Image(label="Image to create variations", type="pil")
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    reference_scale = gr.Slider(
                    label="Masking Scale",
                    minimum=0.01,
                    maximum=0.08,
                    step=0.001,
                    value=0.03,
                    )
                    run_button = gr.Button("Run")
            result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    gr.on(
        triggers=[run_button.click],
        fn = infer,
        inputs = [input_image, prompt, reference_scale, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()