Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,14 +24,27 @@ pipe = FluxPipeline.from_pretrained(
|
|
| 24 |
).to("cuda")
|
| 25 |
|
| 26 |
@spaces.GPU
|
| 27 |
-
def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 28 |
if randomize_seed:
|
| 29 |
seed = random.randint(0, MAX_SEED)
|
| 30 |
-
pipe_prior_output = pipe_prior_redux(control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
images = pipe(
|
| 32 |
guidance_scale=guidance_scale,
|
| 33 |
num_inference_steps=num_inference_steps,
|
| 34 |
generator=torch.Generator("cpu").manual_seed(seed),
|
|
|
|
| 35 |
**pipe_prior_output,
|
| 36 |
).images[0]
|
| 37 |
return images, seed
|
|
@@ -53,6 +66,20 @@ An adapter for FLUX [dev] to create image variations
|
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
input_image = gr.Image(label="Image to create variations", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
run_button = gr.Button("Run")
|
| 57 |
result = gr.Image(label="Result", show_label=False)
|
| 58 |
|
|
@@ -107,7 +134,7 @@ An adapter for FLUX [dev] to create image variations
|
|
| 107 |
gr.on(
|
| 108 |
triggers=[run_button.click],
|
| 109 |
fn = infer,
|
| 110 |
-
inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 111 |
outputs = [result, seed]
|
| 112 |
)
|
| 113 |
|
|
|
|
| 24 |
).to("cuda")
|
| 25 |
|
| 26 |
@spaces.GPU
|
| 27 |
+
def infer(control_image, prompt, reference_scale= 0.03 , seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 28 |
if randomize_seed:
|
| 29 |
seed = random.randint(0, MAX_SEED)
|
| 30 |
+
pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt)
|
| 31 |
+
cond_size = 729
|
| 32 |
+
hidden_size = 4096
|
| 33 |
+
max_sequence_length = 512
|
| 34 |
+
full_attention_size = max_sequence_length + hidden_size + cond_size
|
| 35 |
+
attention_mask = torch.zeros(
|
| 36 |
+
(full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
|
| 37 |
+
)
|
| 38 |
+
bias = torch.log(
|
| 39 |
+
torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
|
| 40 |
+
)
|
| 41 |
+
attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
|
| 42 |
+
joint_attention_kwargs=dict(attention_mask=attention_mask)
|
| 43 |
images = pipe(
|
| 44 |
guidance_scale=guidance_scale,
|
| 45 |
num_inference_steps=num_inference_steps,
|
| 46 |
generator=torch.Generator("cpu").manual_seed(seed),
|
| 47 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 48 |
**pipe_prior_output,
|
| 49 |
).images[0]
|
| 50 |
return images, seed
|
|
|
|
| 66 |
with gr.Row():
|
| 67 |
with gr.Column():
|
| 68 |
input_image = gr.Image(label="Image to create variations", type="pil")
|
| 69 |
+
prompt = gr.Text(
|
| 70 |
+
label="Prompt",
|
| 71 |
+
show_label=False,
|
| 72 |
+
max_lines=1,
|
| 73 |
+
placeholder="Enter your prompt",
|
| 74 |
+
container=False,
|
| 75 |
+
)
|
| 76 |
+
reference_scale = gr.Slider(
|
| 77 |
+
label="Masking Scale",
|
| 78 |
+
minimum=0.01,
|
| 79 |
+
maximum=0.08,
|
| 80 |
+
step=0.001,
|
| 81 |
+
value=0.03,
|
| 82 |
+
)
|
| 83 |
run_button = gr.Button("Run")
|
| 84 |
result = gr.Image(label="Result", show_label=False)
|
| 85 |
|
|
|
|
| 134 |
gr.on(
|
| 135 |
triggers=[run_button.click],
|
| 136 |
fn = infer,
|
| 137 |
+
inputs = [input_image, prompt, reference_scale, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 138 |
outputs = [result, seed]
|
| 139 |
)
|
| 140 |
|