|
import spaces |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import os |
|
|
|
os.system('huggingface-cli download matteogeniaccio/phi-4 --local-dir ./phi-4 --include "phi-4/*"') |
|
|
|
|
|
torch.random.manual_seed(0) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"./phi-4", |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("./phi-4") |
|
|
|
|
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
@spaces.GPU |
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
input_text = "\n".join( |
|
f"{msg['role']}: {msg['content']}" for msg in messages |
|
) |
|
|
|
|
|
generation_args = { |
|
"max_new_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"do_sample": temperature > 0, |
|
"return_full_text": False, |
|
} |
|
output = pipe(input_text, **generation_args) |
|
response = output[0]["generated_text"] |
|
|
|
|
|
for token in response: |
|
yield token |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |