File size: 2,292 Bytes
865e55c
104d147
865e55c
 
 
104d147
865e55c
104d147
865e55c
 
104d147
865e55c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104d147
 
 
 
 
 
 
 
865e55c
104d147
865e55c
 
 
 
 
104d147
 
865e55c
 
 
 
104d147
865e55c
 
 
 
 
 
 
 
 
 
104d147
865e55c
 
 
104d147
865e55c
104d147
 
 
 
 
 
 
 
865e55c
104d147
 
 
 
 
865e55c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os

os.system('huggingface-cli download matteogeniaccio/phi-4 --local-dir ./phi-4 --include "phi-4/*"')

# 加载 phi-4 模型和 tokenizer
torch.random.manual_seed(0)

model = AutoModelForCausalLM.from_pretrained(
    "./phi-4",  # 模型路径
    device_map="cuda",  # 使用 GPU
    torch_dtype="auto",  # 自动选择数据类型
    trust_remote_code=True,  # 允许远程代码加载
)
tokenizer = AutoTokenizer.from_pretrained("./phi-4")

# 设置 pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)

# 响应函数
@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # 构造消息内容
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    # 将消息转换为字符串格式(适用于 text-generation)
    input_text = "\n".join(
        f"{msg['role']}: {msg['content']}" for msg in messages
    )

    # 生成响应
    generation_args = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "do_sample": temperature > 0,
        "return_full_text": False,
    }
    output = pipe(input_text, **generation_args)
    response = output[0]["generated_text"]

    # 返回流式响应
    for token in response:
        yield token

# Gradio 界面
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()