liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os.path as osp
import cv2
import numpy as np
import itertools
import os
import sys
sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
from tqdm import tqdm
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2
class ThreeDKenBurns(BaseMultiViewDataset):
def __init__(self, *args, ROOT, **kwargs):
self.ROOT = ROOT
self.video = False
self.is_metric = False
super().__init__(*args, **kwargs)
self.loaded_data = self._load_data()
def _load_data(self):
self.scenes = os.listdir(self.ROOT)
offset = 0
scenes = []
sceneids = []
images = []
img_ids = []
j = 0
for scene in tqdm(self.scenes):
scene_dir = osp.join(self.ROOT, scene)
rgb_dir = osp.join(scene_dir, "rgb")
basenames = sorted(
[f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")]
)
num_imgs = len(basenames)
img_ids_ = list(np.arange(num_imgs) + offset)
img_ids.extend(img_ids_)
sceneids.extend([j] * num_imgs)
images.extend(basenames)
scenes.append(scene)
# offset groups
offset += num_imgs
j += 1
self.scenes = scenes
self.sceneids = sceneids
self.images = images
self.img_ids = img_ids
def __len__(self):
return len(self.img_ids)
def get_image_num(self):
return len(self.images)
def _get_views(self, idx, resolution, rng, num_views):
new_seed = rng.integers(0, 2**32) + idx
new_rng = np.random.default_rng(new_seed)
image_idxs = new_rng.choice(self.img_ids, num_views, replace=False)
views = []
for view_idx in image_idxs:
scene_id = self.sceneids[view_idx]
scene_dir = osp.join(self.ROOT, self.scenes[scene_id])
rgb_dir = osp.join(scene_dir, "rgb")
depth_dir = osp.join(scene_dir, "depth")
cam_dir = osp.join(scene_dir, "cam")
basename = self.images[view_idx]
# Load RGB image
rgb_image = imread_cv2(osp.join(rgb_dir, basename + ".png"))
depthmap = imread_cv2(osp.join(depth_dir, basename + ".exr"))
depthmap[depthmap > 20000] = 0.0
depthmap = depthmap / 1000.0
cam = np.load(osp.join(cam_dir, basename + ".npz"))
intrinsics = cam["intrinsics"]
camera_pose = np.eye(4)
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
)
views.append(
dict(
img=rgb_image,
depthmap=depthmap.astype(np.float32),
camera_pose=camera_pose.astype(np.float32),
camera_intrinsics=intrinsics.astype(np.float32),
dataset="3DKenBurns",
label=self.scenes[scene_id] + "_" + basename,
instance=f"{str(idx)}_{str(view_idx)}",
is_metric=self.is_metric,
is_video=False,
quantile=np.array(1.0, dtype=np.float32),
img_mask=True,
ray_mask=False,
camera_only=False,
depth_only=False,
single_view=True,
reset=True,
)
)
assert len(views) == num_views
return views