import os.path as osp import cv2 import numpy as np import itertools import os import sys sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) from tqdm import tqdm from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset from dust3r.utils.image import imread_cv2 class ThreeDKenBurns(BaseMultiViewDataset): def __init__(self, *args, ROOT, **kwargs): self.ROOT = ROOT self.video = False self.is_metric = False super().__init__(*args, **kwargs) self.loaded_data = self._load_data() def _load_data(self): self.scenes = os.listdir(self.ROOT) offset = 0 scenes = [] sceneids = [] images = [] img_ids = [] j = 0 for scene in tqdm(self.scenes): scene_dir = osp.join(self.ROOT, scene) rgb_dir = osp.join(scene_dir, "rgb") basenames = sorted( [f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")] ) num_imgs = len(basenames) img_ids_ = list(np.arange(num_imgs) + offset) img_ids.extend(img_ids_) sceneids.extend([j] * num_imgs) images.extend(basenames) scenes.append(scene) # offset groups offset += num_imgs j += 1 self.scenes = scenes self.sceneids = sceneids self.images = images self.img_ids = img_ids def __len__(self): return len(self.img_ids) def get_image_num(self): return len(self.images) def _get_views(self, idx, resolution, rng, num_views): new_seed = rng.integers(0, 2**32) + idx new_rng = np.random.default_rng(new_seed) image_idxs = new_rng.choice(self.img_ids, num_views, replace=False) views = [] for view_idx in image_idxs: scene_id = self.sceneids[view_idx] scene_dir = osp.join(self.ROOT, self.scenes[scene_id]) rgb_dir = osp.join(scene_dir, "rgb") depth_dir = osp.join(scene_dir, "depth") cam_dir = osp.join(scene_dir, "cam") basename = self.images[view_idx] # Load RGB image rgb_image = imread_cv2(osp.join(rgb_dir, basename + ".png")) depthmap = imread_cv2(osp.join(depth_dir, basename + ".exr")) depthmap[depthmap > 20000] = 0.0 depthmap = depthmap / 1000.0 cam = np.load(osp.join(cam_dir, basename + ".npz")) intrinsics = cam["intrinsics"] camera_pose = np.eye(4) rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx ) views.append( dict( img=rgb_image, depthmap=depthmap.astype(np.float32), camera_pose=camera_pose.astype(np.float32), camera_intrinsics=intrinsics.astype(np.float32), dataset="3DKenBurns", label=self.scenes[scene_id] + "_" + basename, instance=f"{str(idx)}_{str(view_idx)}", is_metric=self.is_metric, is_video=False, quantile=np.array(1.0, dtype=np.float32), img_mask=True, ray_mask=False, camera_only=False, depth_only=False, single_view=True, reset=True, ) ) assert len(views) == num_views return views