Spaces:
Runtime error
Runtime error
import os.path as osp | |
import os | |
import sys | |
import itertools | |
sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) | |
import cv2 | |
import numpy as np | |
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset | |
from dust3r.utils.image import imread_cv2 | |
class DL3DV_Multi(BaseMultiViewDataset): | |
def __init__(self, *args, split, ROOT, **kwargs): | |
self.ROOT = ROOT | |
self.video = True | |
self.max_interval = 20 | |
self.is_metric = False | |
super().__init__(*args, **kwargs) | |
self.loaded_data = self._load_data() | |
def _load_data(self): | |
self.all_scenes = sorted( | |
[f for f in os.listdir(self.ROOT) if os.path.isdir(osp.join(self.ROOT, f))] | |
) | |
subscenes = [] | |
for scene in self.all_scenes: | |
# not empty | |
subscenes.extend( | |
[ | |
osp.join(scene, f) | |
for f in os.listdir(osp.join(self.ROOT, scene)) | |
if os.path.isdir(osp.join(self.ROOT, scene, f)) | |
and len(os.listdir(osp.join(self.ROOT, scene, f))) > 0 | |
] | |
) | |
offset = 0 | |
scenes = [] | |
sceneids = [] | |
images = [] | |
scene_img_list = [] | |
start_img_ids = [] | |
j = 0 | |
for scene_idx, scene in enumerate(subscenes): | |
scene_dir = osp.join(self.ROOT, scene, "dense") | |
rgb_paths = sorted( | |
[ | |
f | |
for f in os.listdir(os.path.join(scene_dir, "rgb")) | |
if f.endswith(".png") | |
] | |
) | |
assert len(rgb_paths) > 0, f"{scene_dir} is empty." | |
num_imgs = len(rgb_paths) | |
cut_off = ( | |
self.num_views if not self.allow_repeat else max(self.num_views // 3, 3) | |
) | |
if num_imgs < cut_off: | |
print(f"Skipping {scene}") | |
continue | |
img_ids = list(np.arange(num_imgs) + offset) | |
start_img_ids_ = img_ids[: num_imgs - cut_off + 1] | |
scenes.append(scene) | |
scene_img_list.append(img_ids) | |
sceneids.extend([j] * num_imgs) | |
images.extend(rgb_paths) | |
start_img_ids.extend(start_img_ids_) | |
offset += num_imgs | |
j += 1 | |
self.scenes = scenes | |
self.sceneids = sceneids | |
self.images = images | |
self.start_img_ids = start_img_ids | |
self.scene_img_list = scene_img_list | |
def __len__(self): | |
return len(self.start_img_ids) | |
def get_image_num(self): | |
return len(self.images) | |
def _get_views(self, idx, resolution, rng, num_views): | |
start_id = self.start_img_ids[idx] | |
scene_id = self.sceneids[start_id] | |
all_image_ids = self.scene_img_list[scene_id] | |
pos, ordered_video = self.get_seq_from_start_id( | |
num_views, | |
start_id, | |
all_image_ids, | |
rng, | |
max_interval=self.max_interval, | |
block_shuffle=25, | |
) | |
image_idxs = np.array(all_image_ids)[pos] | |
views = [] | |
for view_idx in image_idxs: | |
scene_id = self.sceneids[view_idx] | |
scene_dir = osp.join(self.ROOT, self.scenes[scene_id], "dense") | |
rgb_path = self.images[view_idx] | |
basename = rgb_path[:-4] | |
rgb_image = imread_cv2( | |
osp.join(scene_dir, "rgb", rgb_path), cv2.IMREAD_COLOR | |
) | |
depthmap = np.load(osp.join(scene_dir, "depth", basename + ".npy")).astype( | |
np.float32 | |
) | |
depthmap[~np.isfinite(depthmap)] = 0 # invalid | |
cam_file = np.load(osp.join(scene_dir, "cam", basename + ".npz")) | |
sky_mask = ( | |
cv2.imread( | |
osp.join(scene_dir, "sky_mask", rgb_path), cv2.IMREAD_UNCHANGED | |
) | |
>= 127 | |
) | |
outlier_mask = cv2.imread( | |
osp.join(scene_dir, "outlier_mask", rgb_path), cv2.IMREAD_UNCHANGED | |
) | |
depthmap[sky_mask] = -1.0 | |
depthmap[outlier_mask >= 127] = 0.0 | |
depthmap = np.nan_to_num(depthmap, nan=0, posinf=0, neginf=0) | |
threshold = ( | |
np.percentile(depthmap[depthmap > 0], 98) | |
if depthmap[depthmap > 0].size > 0 | |
else 0 | |
) | |
depthmap[depthmap > threshold] = 0.0 | |
intrinsics = cam_file["intrinsic"].astype(np.float32) | |
camera_pose = cam_file["pose"].astype(np.float32) | |
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx | |
) | |
views.append( | |
dict( | |
img=rgb_image, | |
depthmap=depthmap.astype(np.float32), | |
camera_pose=camera_pose.astype(np.float32), | |
camera_intrinsics=intrinsics.astype(np.float32), | |
dataset="dl3dv", | |
label=self.scenes[scene_id] + "_" + rgb_path, | |
instance=osp.join(scene_dir, "rgb", rgb_path), | |
is_metric=self.is_metric, | |
is_video=ordered_video, | |
quantile=np.array(0.9, dtype=np.float32), | |
img_mask=True, | |
ray_mask=False, | |
camera_only=False, | |
depth_only=False, | |
single_view=False, | |
reset=False, | |
) | |
) | |
return views | |