File size: 5,661 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os.path as osp
import os
import sys
import itertools

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import cv2
import numpy as np

from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


class DL3DV_Multi(BaseMultiViewDataset):
    def __init__(self, *args, split, ROOT, **kwargs):
        self.ROOT = ROOT
        self.video = True
        self.max_interval = 20
        self.is_metric = False
        super().__init__(*args, **kwargs)

        self.loaded_data = self._load_data()

    def _load_data(self):
        self.all_scenes = sorted(
            [f for f in os.listdir(self.ROOT) if os.path.isdir(osp.join(self.ROOT, f))]
        )
        subscenes = []
        for scene in self.all_scenes:
            # not empty
            subscenes.extend(
                [
                    osp.join(scene, f)
                    for f in os.listdir(osp.join(self.ROOT, scene))
                    if os.path.isdir(osp.join(self.ROOT, scene, f))
                    and len(os.listdir(osp.join(self.ROOT, scene, f))) > 0
                ]
            )

        offset = 0
        scenes = []
        sceneids = []
        images = []
        scene_img_list = []
        start_img_ids = []
        j = 0

        for scene_idx, scene in enumerate(subscenes):
            scene_dir = osp.join(self.ROOT, scene, "dense")
            rgb_paths = sorted(
                [
                    f
                    for f in os.listdir(os.path.join(scene_dir, "rgb"))
                    if f.endswith(".png")
                ]
            )
            assert len(rgb_paths) > 0, f"{scene_dir} is empty."
            num_imgs = len(rgb_paths)
            cut_off = (
                self.num_views if not self.allow_repeat else max(self.num_views // 3, 3)
            )

            if num_imgs < cut_off:
                print(f"Skipping {scene}")
                continue

            img_ids = list(np.arange(num_imgs) + offset)
            start_img_ids_ = img_ids[: num_imgs - cut_off + 1]

            scenes.append(scene)
            scene_img_list.append(img_ids)
            sceneids.extend([j] * num_imgs)
            images.extend(rgb_paths)
            start_img_ids.extend(start_img_ids_)
            offset += num_imgs
            j += 1

        self.scenes = scenes
        self.sceneids = sceneids
        self.images = images
        self.start_img_ids = start_img_ids
        self.scene_img_list = scene_img_list

    def __len__(self):
        return len(self.start_img_ids)

    def get_image_num(self):
        return len(self.images)

    def _get_views(self, idx, resolution, rng, num_views):
        start_id = self.start_img_ids[idx]
        scene_id = self.sceneids[start_id]
        all_image_ids = self.scene_img_list[scene_id]
        pos, ordered_video = self.get_seq_from_start_id(
            num_views,
            start_id,
            all_image_ids,
            rng,
            max_interval=self.max_interval,
            block_shuffle=25,
        )
        image_idxs = np.array(all_image_ids)[pos]

        views = []
        for view_idx in image_idxs:
            scene_id = self.sceneids[view_idx]
            scene_dir = osp.join(self.ROOT, self.scenes[scene_id], "dense")

            rgb_path = self.images[view_idx]
            basename = rgb_path[:-4]

            rgb_image = imread_cv2(
                osp.join(scene_dir, "rgb", rgb_path), cv2.IMREAD_COLOR
            )
            depthmap = np.load(osp.join(scene_dir, "depth", basename + ".npy")).astype(
                np.float32
            )
            depthmap[~np.isfinite(depthmap)] = 0  # invalid
            cam_file = np.load(osp.join(scene_dir, "cam", basename + ".npz"))
            sky_mask = (
                cv2.imread(
                    osp.join(scene_dir, "sky_mask", rgb_path), cv2.IMREAD_UNCHANGED
                )
                >= 127
            )
            outlier_mask = cv2.imread(
                osp.join(scene_dir, "outlier_mask", rgb_path), cv2.IMREAD_UNCHANGED
            )
            depthmap[sky_mask] = -1.0
            depthmap[outlier_mask >= 127] = 0.0
            depthmap = np.nan_to_num(depthmap, nan=0, posinf=0, neginf=0)
            threshold = (
                np.percentile(depthmap[depthmap > 0], 98)
                if depthmap[depthmap > 0].size > 0
                else 0
            )
            depthmap[depthmap > threshold] = 0.0

            intrinsics = cam_file["intrinsic"].astype(np.float32)
            camera_pose = cam_file["pose"].astype(np.float32)

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
            )

            views.append(
                dict(
                    img=rgb_image,
                    depthmap=depthmap.astype(np.float32),
                    camera_pose=camera_pose.astype(np.float32),
                    camera_intrinsics=intrinsics.astype(np.float32),
                    dataset="dl3dv",
                    label=self.scenes[scene_id] + "_" + rgb_path,
                    instance=osp.join(scene_dir, "rgb", rgb_path),
                    is_metric=self.is_metric,
                    is_video=ordered_video,
                    quantile=np.array(0.9, dtype=np.float32),
                    img_mask=True,
                    ray_mask=False,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )
        return views