Spaces:
Runtime error
Runtime error
import PIL | |
import numpy as np | |
import torch | |
import random | |
import itertools | |
from dust3r.datasets.base.easy_dataset import EasyDataset | |
from dust3r.datasets.utils.transforms import ImgNorm, SeqColorJitter | |
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates | |
import dust3r.datasets.utils.cropping as cropping | |
from dust3r.datasets.utils.corr import extract_correspondences_from_pts3d | |
def get_ray_map(c2w1, c2w2, intrinsics, h, w): | |
c2w = np.linalg.inv(c2w1) @ c2w2 | |
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy") | |
grid = np.stack([i, j, np.ones_like(i)], axis=-1) | |
ro = c2w[:3, 3] | |
rd = np.linalg.inv(intrinsics) @ grid.reshape(-1, 3).T | |
rd = (c2w @ np.vstack([rd, np.ones_like(rd[0])])).T[:, :3].reshape(h, w, 3) | |
rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True) | |
ro = np.broadcast_to(ro, (h, w, 3)) | |
ray_map = np.concatenate([ro, rd], axis=-1) | |
return ray_map | |
class BaseMultiViewDataset(EasyDataset): | |
"""Define all basic options. | |
Usage: | |
class MyDataset (BaseMultiViewDataset): | |
def _get_views(self, idx, rng): | |
# overload here | |
views = [] | |
views.append(dict(img=, ...)) | |
return views | |
""" | |
def __init__( | |
self, | |
*, # only keyword arguments | |
num_views=None, | |
split=None, | |
resolution=None, # square_size or (width, height) or list of [(width,height), ...] | |
transform=ImgNorm, | |
aug_crop=False, | |
n_corres=0, | |
nneg=0, | |
seed=None, | |
allow_repeat=False, | |
seq_aug_crop=False, | |
): | |
assert num_views is not None, "undefined num_views" | |
self.num_views = num_views | |
self.split = split | |
self._set_resolutions(resolution) | |
self.n_corres = n_corres | |
self.nneg = nneg | |
assert ( | |
self.n_corres == "all" | |
or isinstance(self.n_corres, int) | |
or ( | |
isinstance(self.n_corres, list) and len(self.n_corres) == self.num_views | |
) | |
), f"Error, n_corres should either be 'all', a single integer or a list of length {self.num_views}" | |
assert ( | |
self.nneg == 0 or self.n_corres != "all" | |
), "nneg should be 0 if n_corres is all" | |
self.is_seq_color_jitter = False | |
if isinstance(transform, str): | |
transform = eval(transform) | |
if transform == SeqColorJitter: | |
transform = SeqColorJitter() | |
self.is_seq_color_jitter = True | |
self.transform = transform | |
self.aug_crop = aug_crop | |
self.seed = seed | |
self.allow_repeat = allow_repeat | |
self.seq_aug_crop = seq_aug_crop | |
def __len__(self): | |
return len(self.scenes) | |
def efficient_random_intervals( | |
start, | |
num_elements, | |
interval_range, | |
fixed_interval_prob=0.8, | |
weights=None, | |
seed=42, | |
): | |
if random.random() < fixed_interval_prob: | |
intervals = random.choices(interval_range, weights=weights) * ( | |
num_elements - 1 | |
) | |
else: | |
intervals = [ | |
random.choices(interval_range, weights=weights)[0] | |
for _ in range(num_elements - 1) | |
] | |
return list(itertools.accumulate([start] + intervals)) | |
def sample_based_on_timestamps(self, i, timestamps, num_views, interval=1): | |
time_diffs = np.abs(timestamps - timestamps[i]) | |
ids_candidate = np.where(time_diffs < interval)[0] | |
ids_candidate = np.sort(ids_candidate) | |
if (self.allow_repeat and len(ids_candidate) < num_views // 3) or ( | |
len(ids_candidate) < num_views | |
): | |
return [] | |
ids_sel_list = [] | |
ids_candidate_left = ids_candidate.copy() | |
while len(ids_candidate_left) >= num_views: | |
ids_sel = np.random.choice(ids_candidate_left, num_views, replace=False) | |
ids_sel_list.append(sorted(ids_sel)) | |
ids_candidate_left = np.setdiff1d(ids_candidate_left, ids_sel) | |
if len(ids_candidate_left) > 0 and len(ids_candidate) >= num_views: | |
ids_sel = np.concatenate( | |
[ | |
ids_candidate_left, | |
np.random.choice( | |
np.setdiff1d(ids_candidate, ids_candidate_left), | |
num_views - len(ids_candidate_left), | |
replace=False, | |
), | |
] | |
) | |
ids_sel_list.append(sorted(ids_sel)) | |
if self.allow_repeat: | |
ids_sel_list.append( | |
sorted(np.random.choice(ids_candidate, num_views, replace=True)) | |
) | |
# add sequences with fixed intervals (all possible intervals) | |
pos_i = np.where(ids_candidate == i)[0][0] | |
curr_interval = 1 | |
stop = len(ids_candidate) < num_views | |
while not stop: | |
pos_sel = [pos_i] | |
count = 0 | |
while len(pos_sel) < num_views: | |
if count % 2 == 0: | |
curr_pos_i = pos_sel[-1] + curr_interval | |
if curr_pos_i >= len(ids_candidate): | |
stop = True | |
break | |
pos_sel.append(curr_pos_i) | |
else: | |
curr_pos_i = pos_sel[0] - curr_interval | |
if curr_pos_i < 0: | |
stop = True | |
break | |
pos_sel.insert(0, curr_pos_i) | |
count += 1 | |
if not stop and len(pos_sel) == num_views: | |
ids_sel = sorted([ids_candidate[pos] for pos in pos_sel]) | |
if ids_sel not in ids_sel_list: | |
ids_sel_list.append(ids_sel) | |
curr_interval += 1 | |
return ids_sel_list | |
def blockwise_shuffle(x, rng, block_shuffle): | |
if block_shuffle is None: | |
return rng.permutation(x).tolist() | |
else: | |
assert block_shuffle > 0 | |
blocks = [x[i : i + block_shuffle] for i in range(0, len(x), block_shuffle)] | |
shuffled_blocks = [rng.permutation(block).tolist() for block in blocks] | |
shuffled_list = [item for block in shuffled_blocks for item in block] | |
return shuffled_list | |
def get_seq_from_start_id( | |
self, | |
num_views, | |
id_ref, | |
ids_all, | |
rng, | |
min_interval=1, | |
max_interval=25, | |
video_prob=0.5, | |
fix_interval_prob=0.5, | |
block_shuffle=None, | |
): | |
""" | |
args: | |
num_views: number of views to return | |
id_ref: the reference id (first id) | |
ids_all: all the ids | |
rng: random number generator | |
max_interval: maximum interval between two views | |
returns: | |
pos: list of positions of the views in ids_all, i.e., index for ids_all | |
is_video: True if the views are consecutive | |
""" | |
assert min_interval > 0, f"min_interval should be > 0, got {min_interval}" | |
assert ( | |
min_interval <= max_interval | |
), f"min_interval should be <= max_interval, got {min_interval} and {max_interval}" | |
assert id_ref in ids_all | |
pos_ref = ids_all.index(id_ref) | |
all_possible_pos = np.arange(pos_ref, len(ids_all)) | |
remaining_sum = len(ids_all) - 1 - pos_ref | |
if remaining_sum >= num_views - 1: | |
if remaining_sum == num_views - 1: | |
assert ids_all[-num_views] == id_ref | |
return [pos_ref + i for i in range(num_views)], True | |
max_interval = min(max_interval, 2 * remaining_sum // (num_views - 1)) | |
intervals = [ | |
rng.choice(range(min_interval, max_interval + 1)) | |
for _ in range(num_views - 1) | |
] | |
# if video or collection | |
if rng.random() < video_prob: | |
# if fixed interval or random | |
if rng.random() < fix_interval_prob: | |
# regular interval | |
fixed_interval = rng.choice( | |
range( | |
1, | |
min(remaining_sum // (num_views - 1) + 1, max_interval + 1), | |
) | |
) | |
intervals = [fixed_interval for _ in range(num_views - 1)] | |
is_video = True | |
else: | |
is_video = False | |
pos = list(itertools.accumulate([pos_ref] + intervals)) | |
pos = [p for p in pos if p < len(ids_all)] | |
pos_candidates = [p for p in all_possible_pos if p not in pos] | |
pos = ( | |
pos | |
+ rng.choice( | |
pos_candidates, num_views - len(pos), replace=False | |
).tolist() | |
) | |
pos = ( | |
sorted(pos) | |
if is_video | |
else self.blockwise_shuffle(pos, rng, block_shuffle) | |
) | |
else: | |
# assert self.allow_repeat | |
uniq_num = remaining_sum | |
new_pos_ref = rng.choice(np.arange(pos_ref + 1)) | |
new_remaining_sum = len(ids_all) - 1 - new_pos_ref | |
new_max_interval = min(max_interval, new_remaining_sum // (uniq_num - 1)) | |
new_intervals = [ | |
rng.choice(range(1, new_max_interval + 1)) for _ in range(uniq_num - 1) | |
] | |
revisit_random = rng.random() | |
video_random = rng.random() | |
if rng.random() < fix_interval_prob and video_random < video_prob: | |
# regular interval | |
fixed_interval = rng.choice(range(1, new_max_interval + 1)) | |
new_intervals = [fixed_interval for _ in range(uniq_num - 1)] | |
pos = list(itertools.accumulate([new_pos_ref] + new_intervals)) | |
is_video = False | |
if revisit_random < 0.5 or video_prob == 1.0: # revisit, video / collection | |
is_video = video_random < video_prob | |
pos = ( | |
self.blockwise_shuffle(pos, rng, block_shuffle) | |
if not is_video | |
else pos | |
) | |
num_full_repeat = num_views // uniq_num | |
pos = ( | |
pos * num_full_repeat | |
+ pos[: num_views - len(pos) * num_full_repeat] | |
) | |
elif revisit_random < 0.9: # random | |
pos = rng.choice(pos, num_views, replace=True) | |
else: # ordered | |
pos = sorted(rng.choice(pos, num_views, replace=True)) | |
assert len(pos) == num_views | |
return pos, is_video | |
def get_img_and_ray_masks(self, is_metric, v, rng, p=[0.8, 0.15, 0.05]): | |
# generate img mask and raymap mask | |
if v == 0 or (not is_metric): | |
img_mask = True | |
raymap_mask = False | |
else: | |
rand_val = rng.random() | |
if rand_val < p[0]: | |
img_mask = True | |
raymap_mask = False | |
elif rand_val < p[0] + p[1]: | |
img_mask = False | |
raymap_mask = True | |
else: | |
img_mask = True | |
raymap_mask = True | |
return img_mask, raymap_mask | |
def get_stats(self): | |
return f"{len(self)} groups of views" | |
def __repr__(self): | |
resolutions_str = "[" + ";".join(f"{w}x{h}" for w, h in self._resolutions) + "]" | |
return ( | |
f"""{type(self).__name__}({self.get_stats()}, | |
{self.num_views=}, | |
{self.split=}, | |
{self.seed=}, | |
resolutions={resolutions_str}, | |
{self.transform=})""".replace( | |
"self.", "" | |
) | |
.replace("\n", "") | |
.replace(" ", "") | |
) | |
def _get_views(self, idx, resolution, rng, num_views): | |
raise NotImplementedError() | |
def __getitem__(self, idx): | |
# print("Receiving:" , idx) | |
if isinstance(idx, (tuple, list, np.ndarray)): | |
# the idx is specifying the aspect-ratio | |
idx, ar_idx, nview = idx | |
else: | |
assert len(self._resolutions) == 1 | |
ar_idx = 0 | |
nview = self.num_views | |
assert nview >= 1 and nview <= self.num_views | |
# set-up the rng | |
if self.seed: # reseed for each __getitem__ | |
self._rng = np.random.default_rng(seed=self.seed + idx) | |
elif not hasattr(self, "_rng"): | |
seed = torch.randint(0, 2**32, (1,)).item() | |
self._rng = np.random.default_rng(seed=seed) | |
if self.aug_crop > 1 and self.seq_aug_crop: | |
self.delta_target_resolution = self._rng.integers(0, self.aug_crop) | |
# over-loaded code | |
resolution = self._resolutions[ | |
ar_idx | |
] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler) | |
views = self._get_views(idx, resolution, self._rng, nview) | |
assert len(views) == nview | |
if "camera_pose" not in views[0]: | |
views[0]["camera_pose"] = np.ones((4, 4), dtype=np.float32) | |
first_view_camera_pose = views[0]["camera_pose"] | |
transform = SeqColorJitter() if self.is_seq_color_jitter else self.transform | |
for v, view in enumerate(views): | |
assert ( | |
"pts3d" not in view | |
), f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}" | |
view["idx"] = (idx, ar_idx, v) | |
# encode the image | |
width, height = view["img"].size | |
view["true_shape"] = np.int32((height, width)) | |
view["img"] = transform(view["img"]) | |
view["sky_mask"] = view["depthmap"] < 0 | |
assert "camera_intrinsics" in view | |
if "camera_pose" not in view: | |
view["camera_pose"] = np.full((4, 4), np.nan, dtype=np.float32) | |
else: | |
assert np.isfinite( | |
view["camera_pose"] | |
).all(), f"NaN in camera pose for view {view_name(view)}" | |
ray_map = get_ray_map( | |
first_view_camera_pose, | |
view["camera_pose"], | |
view["camera_intrinsics"], | |
height, | |
width, | |
) | |
view["ray_map"] = ray_map.astype(np.float32) | |
assert "pts3d" not in view | |
assert "valid_mask" not in view | |
assert np.isfinite( | |
view["depthmap"] | |
).all(), f"NaN in depthmap for view {view_name(view)}" | |
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view) | |
view["pts3d"] = pts3d | |
view["valid_mask"] = valid_mask & np.isfinite(pts3d).all(axis=-1) | |
# check all datatypes | |
for key, val in view.items(): | |
res, err_msg = is_good_type(key, val) | |
assert res, f"{err_msg} with {key}={val} for view {view_name(view)}" | |
K = view["camera_intrinsics"] | |
if self.n_corres > 0: | |
ref_view = views[0] | |
for view in views: | |
corres1, corres2, valid = extract_correspondences_from_pts3d( | |
ref_view, view, self.n_corres, self._rng, nneg=self.nneg | |
) | |
view["corres"] = (corres1, corres2) | |
view["valid_corres"] = valid | |
# last thing done! | |
for view in views: | |
view["rng"] = int.from_bytes(self._rng.bytes(4), "big") | |
return views | |
def _set_resolutions(self, resolutions): | |
assert resolutions is not None, "undefined resolution" | |
if not isinstance(resolutions, list): | |
resolutions = [resolutions] | |
self._resolutions = [] | |
for resolution in resolutions: | |
if isinstance(resolution, int): | |
width = height = resolution | |
else: | |
width, height = resolution | |
assert isinstance( | |
width, int | |
), f"Bad type for {width=} {type(width)=}, should be int" | |
assert isinstance( | |
height, int | |
), f"Bad type for {height=} {type(height)=}, should be int" | |
self._resolutions.append((width, height)) | |
def _crop_resize_if_necessary( | |
self, image, depthmap, intrinsics, resolution, rng=None, info=None | |
): | |
"""This function: | |
- first downsizes the image with LANCZOS inteprolation, | |
which is better than bilinear interpolation in | |
""" | |
if not isinstance(image, PIL.Image.Image): | |
image = PIL.Image.fromarray(image) | |
# downscale with lanczos interpolation so that image.size == resolution | |
# cropping centered on the principal point | |
W, H = image.size | |
cx, cy = intrinsics[:2, 2].round().astype(int) | |
min_margin_x = min(cx, W - cx) | |
min_margin_y = min(cy, H - cy) | |
assert min_margin_x > W / 5, f"Bad principal point in view={info}" | |
assert min_margin_y > H / 5, f"Bad principal point in view={info}" | |
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) | |
l, t = cx - min_margin_x, cy - min_margin_y | |
r, b = cx + min_margin_x, cy + min_margin_y | |
crop_bbox = (l, t, r, b) | |
image, depthmap, intrinsics = cropping.crop_image_depthmap( | |
image, depthmap, intrinsics, crop_bbox | |
) | |
# transpose the resolution if necessary | |
W, H = image.size # new size | |
# high-quality Lanczos down-scaling | |
target_resolution = np.array(resolution) | |
if self.aug_crop > 1: | |
target_resolution += ( | |
rng.integers(0, self.aug_crop) | |
if not self.seq_aug_crop | |
else self.delta_target_resolution | |
) | |
image, depthmap, intrinsics = cropping.rescale_image_depthmap( | |
image, depthmap, intrinsics, target_resolution | |
) | |
# actual cropping (if necessary) with bilinear interpolation | |
intrinsics2 = cropping.camera_matrix_of_crop( | |
intrinsics, image.size, resolution, offset_factor=0.5 | |
) | |
crop_bbox = cropping.bbox_from_intrinsics_in_out( | |
intrinsics, intrinsics2, resolution | |
) | |
image, depthmap, intrinsics2 = cropping.crop_image_depthmap( | |
image, depthmap, intrinsics, crop_bbox | |
) | |
return image, depthmap, intrinsics2 | |
def is_good_type(key, v): | |
"""returns (is_good, err_msg)""" | |
if isinstance(v, (str, int, tuple)): | |
return True, None | |
if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8): | |
return False, f"bad {v.dtype=}" | |
return True, None | |
def view_name(view, batch_index=None): | |
def sel(x): | |
return x[batch_index] if batch_index not in (None, slice(None)) else x | |
db = sel(view["dataset"]) | |
label = sel(view["label"]) | |
instance = sel(view["instance"]) | |
return f"{db}/{label}/{instance}" | |
def transpose_to_landscape(view): | |
height, width = view["true_shape"] | |
if width < height: | |
# rectify portrait to landscape | |
assert view["img"].shape == (3, height, width) | |
view["img"] = view["img"].swapaxes(1, 2) | |
assert view["valid_mask"].shape == (height, width) | |
view["valid_mask"] = view["valid_mask"].swapaxes(0, 1) | |
assert view["depthmap"].shape == (height, width) | |
view["depthmap"] = view["depthmap"].swapaxes(0, 1) | |
assert view["pts3d"].shape == (height, width, 3) | |
view["pts3d"] = view["pts3d"].swapaxes(0, 1) | |
# transpose x and y pixels | |
view["camera_intrinsics"] = view["camera_intrinsics"][[1, 0, 2]] | |
assert view["ray_map"].shape == (height, width, 6) | |
view["ray_map"] = view["ray_map"].swapaxes(0, 1) | |
assert view["sky_mask"].shape == (height, width) | |
view["sky_mask"] = view["sky_mask"].swapaxes(0, 1) | |
if "corres" in view: | |
# transpose correspondences x and y | |
view["corres"][0] = view["corres"][0][:, [1, 0]] | |
view["corres"][1] = view["corres"][1][:, [1, 0]] | |