Spaces:
Runtime error
Runtime error
File size: 20,293 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import PIL
import numpy as np
import torch
import random
import itertools
from dust3r.datasets.base.easy_dataset import EasyDataset
from dust3r.datasets.utils.transforms import ImgNorm, SeqColorJitter
from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates
import dust3r.datasets.utils.cropping as cropping
from dust3r.datasets.utils.corr import extract_correspondences_from_pts3d
def get_ray_map(c2w1, c2w2, intrinsics, h, w):
c2w = np.linalg.inv(c2w1) @ c2w2
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
grid = np.stack([i, j, np.ones_like(i)], axis=-1)
ro = c2w[:3, 3]
rd = np.linalg.inv(intrinsics) @ grid.reshape(-1, 3).T
rd = (c2w @ np.vstack([rd, np.ones_like(rd[0])])).T[:, :3].reshape(h, w, 3)
rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
ro = np.broadcast_to(ro, (h, w, 3))
ray_map = np.concatenate([ro, rd], axis=-1)
return ray_map
class BaseMultiViewDataset(EasyDataset):
"""Define all basic options.
Usage:
class MyDataset (BaseMultiViewDataset):
def _get_views(self, idx, rng):
# overload here
views = []
views.append(dict(img=, ...))
return views
"""
def __init__(
self,
*, # only keyword arguments
num_views=None,
split=None,
resolution=None, # square_size or (width, height) or list of [(width,height), ...]
transform=ImgNorm,
aug_crop=False,
n_corres=0,
nneg=0,
seed=None,
allow_repeat=False,
seq_aug_crop=False,
):
assert num_views is not None, "undefined num_views"
self.num_views = num_views
self.split = split
self._set_resolutions(resolution)
self.n_corres = n_corres
self.nneg = nneg
assert (
self.n_corres == "all"
or isinstance(self.n_corres, int)
or (
isinstance(self.n_corres, list) and len(self.n_corres) == self.num_views
)
), f"Error, n_corres should either be 'all', a single integer or a list of length {self.num_views}"
assert (
self.nneg == 0 or self.n_corres != "all"
), "nneg should be 0 if n_corres is all"
self.is_seq_color_jitter = False
if isinstance(transform, str):
transform = eval(transform)
if transform == SeqColorJitter:
transform = SeqColorJitter()
self.is_seq_color_jitter = True
self.transform = transform
self.aug_crop = aug_crop
self.seed = seed
self.allow_repeat = allow_repeat
self.seq_aug_crop = seq_aug_crop
def __len__(self):
return len(self.scenes)
@staticmethod
def efficient_random_intervals(
start,
num_elements,
interval_range,
fixed_interval_prob=0.8,
weights=None,
seed=42,
):
if random.random() < fixed_interval_prob:
intervals = random.choices(interval_range, weights=weights) * (
num_elements - 1
)
else:
intervals = [
random.choices(interval_range, weights=weights)[0]
for _ in range(num_elements - 1)
]
return list(itertools.accumulate([start] + intervals))
def sample_based_on_timestamps(self, i, timestamps, num_views, interval=1):
time_diffs = np.abs(timestamps - timestamps[i])
ids_candidate = np.where(time_diffs < interval)[0]
ids_candidate = np.sort(ids_candidate)
if (self.allow_repeat and len(ids_candidate) < num_views // 3) or (
len(ids_candidate) < num_views
):
return []
ids_sel_list = []
ids_candidate_left = ids_candidate.copy()
while len(ids_candidate_left) >= num_views:
ids_sel = np.random.choice(ids_candidate_left, num_views, replace=False)
ids_sel_list.append(sorted(ids_sel))
ids_candidate_left = np.setdiff1d(ids_candidate_left, ids_sel)
if len(ids_candidate_left) > 0 and len(ids_candidate) >= num_views:
ids_sel = np.concatenate(
[
ids_candidate_left,
np.random.choice(
np.setdiff1d(ids_candidate, ids_candidate_left),
num_views - len(ids_candidate_left),
replace=False,
),
]
)
ids_sel_list.append(sorted(ids_sel))
if self.allow_repeat:
ids_sel_list.append(
sorted(np.random.choice(ids_candidate, num_views, replace=True))
)
# add sequences with fixed intervals (all possible intervals)
pos_i = np.where(ids_candidate == i)[0][0]
curr_interval = 1
stop = len(ids_candidate) < num_views
while not stop:
pos_sel = [pos_i]
count = 0
while len(pos_sel) < num_views:
if count % 2 == 0:
curr_pos_i = pos_sel[-1] + curr_interval
if curr_pos_i >= len(ids_candidate):
stop = True
break
pos_sel.append(curr_pos_i)
else:
curr_pos_i = pos_sel[0] - curr_interval
if curr_pos_i < 0:
stop = True
break
pos_sel.insert(0, curr_pos_i)
count += 1
if not stop and len(pos_sel) == num_views:
ids_sel = sorted([ids_candidate[pos] for pos in pos_sel])
if ids_sel not in ids_sel_list:
ids_sel_list.append(ids_sel)
curr_interval += 1
return ids_sel_list
@staticmethod
def blockwise_shuffle(x, rng, block_shuffle):
if block_shuffle is None:
return rng.permutation(x).tolist()
else:
assert block_shuffle > 0
blocks = [x[i : i + block_shuffle] for i in range(0, len(x), block_shuffle)]
shuffled_blocks = [rng.permutation(block).tolist() for block in blocks]
shuffled_list = [item for block in shuffled_blocks for item in block]
return shuffled_list
def get_seq_from_start_id(
self,
num_views,
id_ref,
ids_all,
rng,
min_interval=1,
max_interval=25,
video_prob=0.5,
fix_interval_prob=0.5,
block_shuffle=None,
):
"""
args:
num_views: number of views to return
id_ref: the reference id (first id)
ids_all: all the ids
rng: random number generator
max_interval: maximum interval between two views
returns:
pos: list of positions of the views in ids_all, i.e., index for ids_all
is_video: True if the views are consecutive
"""
assert min_interval > 0, f"min_interval should be > 0, got {min_interval}"
assert (
min_interval <= max_interval
), f"min_interval should be <= max_interval, got {min_interval} and {max_interval}"
assert id_ref in ids_all
pos_ref = ids_all.index(id_ref)
all_possible_pos = np.arange(pos_ref, len(ids_all))
remaining_sum = len(ids_all) - 1 - pos_ref
if remaining_sum >= num_views - 1:
if remaining_sum == num_views - 1:
assert ids_all[-num_views] == id_ref
return [pos_ref + i for i in range(num_views)], True
max_interval = min(max_interval, 2 * remaining_sum // (num_views - 1))
intervals = [
rng.choice(range(min_interval, max_interval + 1))
for _ in range(num_views - 1)
]
# if video or collection
if rng.random() < video_prob:
# if fixed interval or random
if rng.random() < fix_interval_prob:
# regular interval
fixed_interval = rng.choice(
range(
1,
min(remaining_sum // (num_views - 1) + 1, max_interval + 1),
)
)
intervals = [fixed_interval for _ in range(num_views - 1)]
is_video = True
else:
is_video = False
pos = list(itertools.accumulate([pos_ref] + intervals))
pos = [p for p in pos if p < len(ids_all)]
pos_candidates = [p for p in all_possible_pos if p not in pos]
pos = (
pos
+ rng.choice(
pos_candidates, num_views - len(pos), replace=False
).tolist()
)
pos = (
sorted(pos)
if is_video
else self.blockwise_shuffle(pos, rng, block_shuffle)
)
else:
# assert self.allow_repeat
uniq_num = remaining_sum
new_pos_ref = rng.choice(np.arange(pos_ref + 1))
new_remaining_sum = len(ids_all) - 1 - new_pos_ref
new_max_interval = min(max_interval, new_remaining_sum // (uniq_num - 1))
new_intervals = [
rng.choice(range(1, new_max_interval + 1)) for _ in range(uniq_num - 1)
]
revisit_random = rng.random()
video_random = rng.random()
if rng.random() < fix_interval_prob and video_random < video_prob:
# regular interval
fixed_interval = rng.choice(range(1, new_max_interval + 1))
new_intervals = [fixed_interval for _ in range(uniq_num - 1)]
pos = list(itertools.accumulate([new_pos_ref] + new_intervals))
is_video = False
if revisit_random < 0.5 or video_prob == 1.0: # revisit, video / collection
is_video = video_random < video_prob
pos = (
self.blockwise_shuffle(pos, rng, block_shuffle)
if not is_video
else pos
)
num_full_repeat = num_views // uniq_num
pos = (
pos * num_full_repeat
+ pos[: num_views - len(pos) * num_full_repeat]
)
elif revisit_random < 0.9: # random
pos = rng.choice(pos, num_views, replace=True)
else: # ordered
pos = sorted(rng.choice(pos, num_views, replace=True))
assert len(pos) == num_views
return pos, is_video
def get_img_and_ray_masks(self, is_metric, v, rng, p=[0.8, 0.15, 0.05]):
# generate img mask and raymap mask
if v == 0 or (not is_metric):
img_mask = True
raymap_mask = False
else:
rand_val = rng.random()
if rand_val < p[0]:
img_mask = True
raymap_mask = False
elif rand_val < p[0] + p[1]:
img_mask = False
raymap_mask = True
else:
img_mask = True
raymap_mask = True
return img_mask, raymap_mask
def get_stats(self):
return f"{len(self)} groups of views"
def __repr__(self):
resolutions_str = "[" + ";".join(f"{w}x{h}" for w, h in self._resolutions) + "]"
return (
f"""{type(self).__name__}({self.get_stats()},
{self.num_views=},
{self.split=},
{self.seed=},
resolutions={resolutions_str},
{self.transform=})""".replace(
"self.", ""
)
.replace("\n", "")
.replace(" ", "")
)
def _get_views(self, idx, resolution, rng, num_views):
raise NotImplementedError()
def __getitem__(self, idx):
# print("Receiving:" , idx)
if isinstance(idx, (tuple, list, np.ndarray)):
# the idx is specifying the aspect-ratio
idx, ar_idx, nview = idx
else:
assert len(self._resolutions) == 1
ar_idx = 0
nview = self.num_views
assert nview >= 1 and nview <= self.num_views
# set-up the rng
if self.seed: # reseed for each __getitem__
self._rng = np.random.default_rng(seed=self.seed + idx)
elif not hasattr(self, "_rng"):
seed = torch.randint(0, 2**32, (1,)).item()
self._rng = np.random.default_rng(seed=seed)
if self.aug_crop > 1 and self.seq_aug_crop:
self.delta_target_resolution = self._rng.integers(0, self.aug_crop)
# over-loaded code
resolution = self._resolutions[
ar_idx
] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler)
views = self._get_views(idx, resolution, self._rng, nview)
assert len(views) == nview
if "camera_pose" not in views[0]:
views[0]["camera_pose"] = np.ones((4, 4), dtype=np.float32)
first_view_camera_pose = views[0]["camera_pose"]
transform = SeqColorJitter() if self.is_seq_color_jitter else self.transform
for v, view in enumerate(views):
assert (
"pts3d" not in view
), f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}"
view["idx"] = (idx, ar_idx, v)
# encode the image
width, height = view["img"].size
view["true_shape"] = np.int32((height, width))
view["img"] = transform(view["img"])
view["sky_mask"] = view["depthmap"] < 0
assert "camera_intrinsics" in view
if "camera_pose" not in view:
view["camera_pose"] = np.full((4, 4), np.nan, dtype=np.float32)
else:
assert np.isfinite(
view["camera_pose"]
).all(), f"NaN in camera pose for view {view_name(view)}"
ray_map = get_ray_map(
first_view_camera_pose,
view["camera_pose"],
view["camera_intrinsics"],
height,
width,
)
view["ray_map"] = ray_map.astype(np.float32)
assert "pts3d" not in view
assert "valid_mask" not in view
assert np.isfinite(
view["depthmap"]
).all(), f"NaN in depthmap for view {view_name(view)}"
pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view)
view["pts3d"] = pts3d
view["valid_mask"] = valid_mask & np.isfinite(pts3d).all(axis=-1)
# check all datatypes
for key, val in view.items():
res, err_msg = is_good_type(key, val)
assert res, f"{err_msg} with {key}={val} for view {view_name(view)}"
K = view["camera_intrinsics"]
if self.n_corres > 0:
ref_view = views[0]
for view in views:
corres1, corres2, valid = extract_correspondences_from_pts3d(
ref_view, view, self.n_corres, self._rng, nneg=self.nneg
)
view["corres"] = (corres1, corres2)
view["valid_corres"] = valid
# last thing done!
for view in views:
view["rng"] = int.from_bytes(self._rng.bytes(4), "big")
return views
def _set_resolutions(self, resolutions):
assert resolutions is not None, "undefined resolution"
if not isinstance(resolutions, list):
resolutions = [resolutions]
self._resolutions = []
for resolution in resolutions:
if isinstance(resolution, int):
width = height = resolution
else:
width, height = resolution
assert isinstance(
width, int
), f"Bad type for {width=} {type(width)=}, should be int"
assert isinstance(
height, int
), f"Bad type for {height=} {type(height)=}, should be int"
self._resolutions.append((width, height))
def _crop_resize_if_necessary(
self, image, depthmap, intrinsics, resolution, rng=None, info=None
):
"""This function:
- first downsizes the image with LANCZOS inteprolation,
which is better than bilinear interpolation in
"""
if not isinstance(image, PIL.Image.Image):
image = PIL.Image.fromarray(image)
# downscale with lanczos interpolation so that image.size == resolution
# cropping centered on the principal point
W, H = image.size
cx, cy = intrinsics[:2, 2].round().astype(int)
min_margin_x = min(cx, W - cx)
min_margin_y = min(cy, H - cy)
assert min_margin_x > W / 5, f"Bad principal point in view={info}"
assert min_margin_y > H / 5, f"Bad principal point in view={info}"
# the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
l, t = cx - min_margin_x, cy - min_margin_y
r, b = cx + min_margin_x, cy + min_margin_y
crop_bbox = (l, t, r, b)
image, depthmap, intrinsics = cropping.crop_image_depthmap(
image, depthmap, intrinsics, crop_bbox
)
# transpose the resolution if necessary
W, H = image.size # new size
# high-quality Lanczos down-scaling
target_resolution = np.array(resolution)
if self.aug_crop > 1:
target_resolution += (
rng.integers(0, self.aug_crop)
if not self.seq_aug_crop
else self.delta_target_resolution
)
image, depthmap, intrinsics = cropping.rescale_image_depthmap(
image, depthmap, intrinsics, target_resolution
)
# actual cropping (if necessary) with bilinear interpolation
intrinsics2 = cropping.camera_matrix_of_crop(
intrinsics, image.size, resolution, offset_factor=0.5
)
crop_bbox = cropping.bbox_from_intrinsics_in_out(
intrinsics, intrinsics2, resolution
)
image, depthmap, intrinsics2 = cropping.crop_image_depthmap(
image, depthmap, intrinsics, crop_bbox
)
return image, depthmap, intrinsics2
def is_good_type(key, v):
"""returns (is_good, err_msg)"""
if isinstance(v, (str, int, tuple)):
return True, None
if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8):
return False, f"bad {v.dtype=}"
return True, None
def view_name(view, batch_index=None):
def sel(x):
return x[batch_index] if batch_index not in (None, slice(None)) else x
db = sel(view["dataset"])
label = sel(view["label"])
instance = sel(view["instance"])
return f"{db}/{label}/{instance}"
def transpose_to_landscape(view):
height, width = view["true_shape"]
if width < height:
# rectify portrait to landscape
assert view["img"].shape == (3, height, width)
view["img"] = view["img"].swapaxes(1, 2)
assert view["valid_mask"].shape == (height, width)
view["valid_mask"] = view["valid_mask"].swapaxes(0, 1)
assert view["depthmap"].shape == (height, width)
view["depthmap"] = view["depthmap"].swapaxes(0, 1)
assert view["pts3d"].shape == (height, width, 3)
view["pts3d"] = view["pts3d"].swapaxes(0, 1)
# transpose x and y pixels
view["camera_intrinsics"] = view["camera_intrinsics"][[1, 0, 2]]
assert view["ray_map"].shape == (height, width, 6)
view["ray_map"] = view["ray_map"].swapaxes(0, 1)
assert view["sky_mask"].shape == (height, width)
view["sky_mask"] = view["sky_mask"].swapaxes(0, 1)
if "corres" in view:
# transpose correspondences x and y
view["corres"][0] = view["corres"][0][:, [1, 0]]
view["corres"][1] = view["corres"][1][:, [1, 0]]
|