Spaces:
Runtime error
Runtime error
import os | |
import sys | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) | |
import time | |
import torch | |
import argparse | |
import numpy as np | |
import open3d as o3d | |
import os.path as osp | |
from torch.utils.data import DataLoader | |
from add_ckpt_path import add_path_to_dust3r | |
from accelerate import Accelerator | |
from torch.utils.data._utils.collate import default_collate | |
import tempfile | |
from tqdm import tqdm | |
def get_args_parser(): | |
parser = argparse.ArgumentParser("3D Reconstruction evaluation", add_help=False) | |
parser.add_argument( | |
"--weights", | |
type=str, | |
default="", | |
help="ckpt name", | |
) | |
parser.add_argument("--device", type=str, default="cuda:0", help="device") | |
parser.add_argument("--model_name", type=str, default="") | |
parser.add_argument( | |
"--conf_thresh", type=float, default=0.0, help="confidence threshold" | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="", | |
help="value for outdir", | |
) | |
parser.add_argument("--size", type=int, default=512) | |
parser.add_argument("--revisit", type=int, default=1, help="revisit times") | |
parser.add_argument("--freeze", action="store_true") | |
return parser | |
def main(args): | |
add_path_to_dust3r(args.weights) | |
from eval.mv_recon.data import SevenScenes, NRGBD | |
from eval.mv_recon.utils import accuracy, completion | |
if args.size == 512: | |
resolution = (512, 384) | |
elif args.size == 224: | |
resolution = 224 | |
else: | |
raise NotImplementedError | |
datasets_all = { | |
"7scenes": SevenScenes( | |
split="test", | |
ROOT="./data/7scenes", | |
resolution=resolution, | |
num_seq=1, | |
full_video=True, | |
kf_every=200, | |
), # 20), | |
"NRGBD": NRGBD( | |
split="test", | |
ROOT="./data/neural_rgbd", | |
resolution=resolution, | |
num_seq=1, | |
full_video=True, | |
kf_every=500, | |
), | |
} | |
accelerator = Accelerator() | |
device = accelerator.device | |
model_name = args.model_name | |
if model_name == "ours" or model_name == "cut3r": | |
from dust3r.model import ARCroco3DStereo | |
from eval.mv_recon.criterion import Regr3D_t_ScaleShiftInv, L21 | |
from dust3r.utils.geometry import geotrf | |
from copy import deepcopy | |
model = ARCroco3DStereo.from_pretrained(args.weights).to(device) | |
model.eval() | |
else: | |
raise NotImplementedError | |
os.makedirs(args.output_dir, exist_ok=True) | |
criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True) | |
with torch.no_grad(): | |
for name_data, dataset in datasets_all.items(): | |
save_path = osp.join(args.output_dir, name_data) | |
os.makedirs(save_path, exist_ok=True) | |
log_file = osp.join(save_path, f"logs_{accelerator.process_index}.txt") | |
acc_all = 0 | |
acc_all_med = 0 | |
comp_all = 0 | |
comp_all_med = 0 | |
nc1_all = 0 | |
nc1_all_med = 0 | |
nc2_all = 0 | |
nc2_all_med = 0 | |
fps_all = [] | |
time_all = [] | |
with accelerator.split_between_processes(list(range(len(dataset)))) as idxs: | |
for data_idx in tqdm(idxs): | |
batch = default_collate([dataset[data_idx]]) | |
ignore_keys = set( | |
[ | |
"depthmap", | |
"dataset", | |
"label", | |
"instance", | |
"idx", | |
"true_shape", | |
"rng", | |
] | |
) | |
for view in batch: | |
for name in view.keys(): # pseudo_focal | |
if name in ignore_keys: | |
continue | |
if isinstance(view[name], tuple) or isinstance( | |
view[name], list | |
): | |
view[name] = [ | |
x.to(device, non_blocking=True) for x in view[name] | |
] | |
else: | |
view[name] = view[name].to(device, non_blocking=True) | |
if model_name == "ours" or model_name == "cut3r": | |
revisit = args.revisit | |
update = not args.freeze | |
if revisit > 1: | |
# repeat input for 'revisit' times | |
new_views = [] | |
for r in range(revisit): | |
for i in range(len(batch)): | |
new_view = deepcopy(batch[i]) | |
new_view["idx"] = [ | |
(r * len(batch) + i) | |
for _ in range(len(batch[i]["idx"])) | |
] | |
new_view["instance"] = [ | |
str(r * len(batch) + i) | |
for _ in range(len(batch[i]["instance"])) | |
] | |
if r > 0: | |
if not update: | |
new_view["update"] = torch.zeros_like( | |
batch[i]["update"] | |
).bool() | |
new_views.append(new_view) | |
batch = new_views | |
with torch.cuda.amp.autocast(enabled=False): | |
start = time.time() | |
output = model(batch) | |
end = time.time() | |
preds, batch = output.ress, output.views | |
valid_length = len(preds) // revisit | |
preds = preds[-valid_length:] | |
batch = batch[-valid_length:] | |
fps = len(batch) / (end - start) | |
print( | |
f"Finished reconstruction for {name_data} {data_idx+1}/{len(dataset)}, FPS: {fps:.2f}" | |
) | |
# continue | |
fps_all.append(fps) | |
time_all.append(end - start) | |
# Evaluation | |
print(f"Evaluation for {name_data} {data_idx+1}/{len(dataset)}") | |
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = ( | |
criterion.get_all_pts3d_t(batch, preds) | |
) | |
pred_scale, gt_scale, pred_shift_z, gt_shift_z = ( | |
monitoring["pred_scale"], | |
monitoring["gt_scale"], | |
monitoring["pred_shift_z"], | |
monitoring["gt_shift_z"], | |
) | |
in_camera1 = None | |
pts_all = [] | |
pts_gt_all = [] | |
images_all = [] | |
masks_all = [] | |
conf_all = [] | |
for j, view in enumerate(batch): | |
if in_camera1 is None: | |
in_camera1 = view["camera_pose"][0].cpu() | |
image = view["img"].permute(0, 2, 3, 1).cpu().numpy()[0] | |
mask = view["valid_mask"].cpu().numpy()[0] | |
# pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0] | |
pts = pred_pts[j].cpu().numpy()[0] | |
conf = preds[j]["conf"].cpu().data.numpy()[0] | |
# mask = mask & (conf > 1.8) | |
pts_gt = gt_pts[j].detach().cpu().numpy()[0] | |
H, W = image.shape[:2] | |
cx = W // 2 | |
cy = H // 2 | |
l, t = cx - 112, cy - 112 | |
r, b = cx + 112, cy + 112 | |
image = image[t:b, l:r] | |
mask = mask[t:b, l:r] | |
pts = pts[t:b, l:r] | |
pts_gt = pts_gt[t:b, l:r] | |
#### Align predicted 3D points to the ground truth | |
pts[..., -1] += gt_shift_z.cpu().numpy().item() | |
pts = geotrf(in_camera1, pts) | |
pts_gt[..., -1] += gt_shift_z.cpu().numpy().item() | |
pts_gt = geotrf(in_camera1, pts_gt) | |
images_all.append((image[None, ...] + 1.0) / 2.0) | |
pts_all.append(pts[None, ...]) | |
pts_gt_all.append(pts_gt[None, ...]) | |
masks_all.append(mask[None, ...]) | |
conf_all.append(conf[None, ...]) | |
images_all = np.concatenate(images_all, axis=0) | |
pts_all = np.concatenate(pts_all, axis=0) | |
pts_gt_all = np.concatenate(pts_gt_all, axis=0) | |
masks_all = np.concatenate(masks_all, axis=0) | |
scene_id = view["label"][0].rsplit("/", 1)[0] | |
save_params = {} | |
save_params["images_all"] = images_all | |
save_params["pts_all"] = pts_all | |
save_params["pts_gt_all"] = pts_gt_all | |
save_params["masks_all"] = masks_all | |
np.save( | |
os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"), | |
save_params, | |
) | |
if "DTU" in name_data: | |
threshold = 100 | |
else: | |
threshold = 0.1 | |
pts_all_masked = pts_all[masks_all > 0] | |
pts_gt_all_masked = pts_gt_all[masks_all > 0] | |
images_all_masked = images_all[masks_all > 0] | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector( | |
pts_all_masked.reshape(-1, 3) | |
) | |
pcd.colors = o3d.utility.Vector3dVector( | |
images_all_masked.reshape(-1, 3) | |
) | |
o3d.io.write_point_cloud( | |
os.path.join( | |
save_path, f"{scene_id.replace('/', '_')}-mask.ply" | |
), | |
pcd, | |
) | |
pcd_gt = o3d.geometry.PointCloud() | |
pcd_gt.points = o3d.utility.Vector3dVector( | |
pts_gt_all_masked.reshape(-1, 3) | |
) | |
pcd_gt.colors = o3d.utility.Vector3dVector( | |
images_all_masked.reshape(-1, 3) | |
) | |
o3d.io.write_point_cloud( | |
os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"), | |
pcd_gt, | |
) | |
trans_init = np.eye(4) | |
reg_p2p = o3d.pipelines.registration.registration_icp( | |
pcd, | |
pcd_gt, | |
threshold, | |
trans_init, | |
o3d.pipelines.registration.TransformationEstimationPointToPoint(), | |
) | |
transformation = reg_p2p.transformation | |
pcd = pcd.transform(transformation) | |
pcd.estimate_normals() | |
pcd_gt.estimate_normals() | |
gt_normal = np.asarray(pcd_gt.normals) | |
pred_normal = np.asarray(pcd.normals) | |
acc, acc_med, nc1, nc1_med = accuracy( | |
pcd_gt.points, pcd.points, gt_normal, pred_normal | |
) | |
comp, comp_med, nc2, nc2_med = completion( | |
pcd_gt.points, pcd.points, gt_normal, pred_normal | |
) | |
print( | |
f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}" | |
) | |
print( | |
f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}", | |
file=open(log_file, "a"), | |
) | |
acc_all += acc | |
comp_all += comp | |
nc1_all += nc1 | |
nc2_all += nc2 | |
acc_all_med += acc_med | |
comp_all_med += comp_med | |
nc1_all_med += nc1_med | |
nc2_all_med += nc2_med | |
# release cuda memory | |
torch.cuda.empty_cache() | |
accelerator.wait_for_everyone() | |
# Get depth from pcd and run TSDFusion | |
if accelerator.is_main_process: | |
to_write = "" | |
# Copy the error log from each process to the main error log | |
for i in range(8): | |
if not os.path.exists(osp.join(save_path, f"logs_{i}.txt")): | |
break | |
with open(osp.join(save_path, f"logs_{i}.txt"), "r") as f_sub: | |
to_write += f_sub.read() | |
with open(osp.join(save_path, f"logs_all.txt"), "w") as f: | |
log_data = to_write | |
metrics = defaultdict(list) | |
for line in log_data.strip().split("\n"): | |
match = regex.match(line) | |
if match: | |
data = match.groupdict() | |
# Exclude 'scene_id' from metrics as it's an identifier | |
for key, value in data.items(): | |
if key != "scene_id": | |
metrics[key].append(float(value)) | |
metrics["nc"].append( | |
(float(data["nc1"]) + float(data["nc2"])) / 2 | |
) | |
metrics["nc_med"].append( | |
(float(data["nc1_med"]) + float(data["nc2_med"])) / 2 | |
) | |
mean_metrics = { | |
metric: sum(values) / len(values) | |
for metric, values in metrics.items() | |
} | |
c_name = "mean" | |
print_str = f"{c_name.ljust(20)}: " | |
for m_name in mean_metrics: | |
print_num = np.mean(mean_metrics[m_name]) | |
print_str = print_str + f"{m_name}: {print_num:.3f} | " | |
print_str = print_str + "\n" | |
f.write(to_write + print_str) | |
from collections import defaultdict | |
import re | |
pattern = r""" | |
Idx:\s*(?P<scene_id>[^,]+),\s* | |
Acc:\s*(?P<acc>[^,]+),\s* | |
Comp:\s*(?P<comp>[^,]+),\s* | |
NC1:\s*(?P<nc1>[^,]+),\s* | |
NC2:\s*(?P<nc2>[^,]+)\s*-\s* | |
Acc_med:\s*(?P<acc_med>[^,]+),\s* | |
Compc_med:\s*(?P<comp_med>[^,]+),\s* | |
NC1c_med:\s*(?P<nc1_med>[^,]+),\s* | |
NC2c_med:\s*(?P<nc2_med>[^,]+) | |
""" | |
regex = re.compile(pattern, re.VERBOSE) | |
if __name__ == "__main__": | |
parser = get_args_parser() | |
args = parser.parse_args() | |
main(args) | |