Spaces:
Runtime error
Runtime error
File size: 16,025 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
import time
import torch
import argparse
import numpy as np
import open3d as o3d
import os.path as osp
from torch.utils.data import DataLoader
from add_ckpt_path import add_path_to_dust3r
from accelerate import Accelerator
from torch.utils.data._utils.collate import default_collate
import tempfile
from tqdm import tqdm
def get_args_parser():
parser = argparse.ArgumentParser("3D Reconstruction evaluation", add_help=False)
parser.add_argument(
"--weights",
type=str,
default="",
help="ckpt name",
)
parser.add_argument("--device", type=str, default="cuda:0", help="device")
parser.add_argument("--model_name", type=str, default="")
parser.add_argument(
"--conf_thresh", type=float, default=0.0, help="confidence threshold"
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help="value for outdir",
)
parser.add_argument("--size", type=int, default=512)
parser.add_argument("--revisit", type=int, default=1, help="revisit times")
parser.add_argument("--freeze", action="store_true")
return parser
def main(args):
add_path_to_dust3r(args.weights)
from eval.mv_recon.data import SevenScenes, NRGBD
from eval.mv_recon.utils import accuracy, completion
if args.size == 512:
resolution = (512, 384)
elif args.size == 224:
resolution = 224
else:
raise NotImplementedError
datasets_all = {
"7scenes": SevenScenes(
split="test",
ROOT="./data/7scenes",
resolution=resolution,
num_seq=1,
full_video=True,
kf_every=200,
), # 20),
"NRGBD": NRGBD(
split="test",
ROOT="./data/neural_rgbd",
resolution=resolution,
num_seq=1,
full_video=True,
kf_every=500,
),
}
accelerator = Accelerator()
device = accelerator.device
model_name = args.model_name
if model_name == "ours" or model_name == "cut3r":
from dust3r.model import ARCroco3DStereo
from eval.mv_recon.criterion import Regr3D_t_ScaleShiftInv, L21
from dust3r.utils.geometry import geotrf
from copy import deepcopy
model = ARCroco3DStereo.from_pretrained(args.weights).to(device)
model.eval()
else:
raise NotImplementedError
os.makedirs(args.output_dir, exist_ok=True)
criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True)
with torch.no_grad():
for name_data, dataset in datasets_all.items():
save_path = osp.join(args.output_dir, name_data)
os.makedirs(save_path, exist_ok=True)
log_file = osp.join(save_path, f"logs_{accelerator.process_index}.txt")
acc_all = 0
acc_all_med = 0
comp_all = 0
comp_all_med = 0
nc1_all = 0
nc1_all_med = 0
nc2_all = 0
nc2_all_med = 0
fps_all = []
time_all = []
with accelerator.split_between_processes(list(range(len(dataset)))) as idxs:
for data_idx in tqdm(idxs):
batch = default_collate([dataset[data_idx]])
ignore_keys = set(
[
"depthmap",
"dataset",
"label",
"instance",
"idx",
"true_shape",
"rng",
]
)
for view in batch:
for name in view.keys(): # pseudo_focal
if name in ignore_keys:
continue
if isinstance(view[name], tuple) or isinstance(
view[name], list
):
view[name] = [
x.to(device, non_blocking=True) for x in view[name]
]
else:
view[name] = view[name].to(device, non_blocking=True)
if model_name == "ours" or model_name == "cut3r":
revisit = args.revisit
update = not args.freeze
if revisit > 1:
# repeat input for 'revisit' times
new_views = []
for r in range(revisit):
for i in range(len(batch)):
new_view = deepcopy(batch[i])
new_view["idx"] = [
(r * len(batch) + i)
for _ in range(len(batch[i]["idx"]))
]
new_view["instance"] = [
str(r * len(batch) + i)
for _ in range(len(batch[i]["instance"]))
]
if r > 0:
if not update:
new_view["update"] = torch.zeros_like(
batch[i]["update"]
).bool()
new_views.append(new_view)
batch = new_views
with torch.cuda.amp.autocast(enabled=False):
start = time.time()
output = model(batch)
end = time.time()
preds, batch = output.ress, output.views
valid_length = len(preds) // revisit
preds = preds[-valid_length:]
batch = batch[-valid_length:]
fps = len(batch) / (end - start)
print(
f"Finished reconstruction for {name_data} {data_idx+1}/{len(dataset)}, FPS: {fps:.2f}"
)
# continue
fps_all.append(fps)
time_all.append(end - start)
# Evaluation
print(f"Evaluation for {name_data} {data_idx+1}/{len(dataset)}")
gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
criterion.get_all_pts3d_t(batch, preds)
)
pred_scale, gt_scale, pred_shift_z, gt_shift_z = (
monitoring["pred_scale"],
monitoring["gt_scale"],
monitoring["pred_shift_z"],
monitoring["gt_shift_z"],
)
in_camera1 = None
pts_all = []
pts_gt_all = []
images_all = []
masks_all = []
conf_all = []
for j, view in enumerate(batch):
if in_camera1 is None:
in_camera1 = view["camera_pose"][0].cpu()
image = view["img"].permute(0, 2, 3, 1).cpu().numpy()[0]
mask = view["valid_mask"].cpu().numpy()[0]
# pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
pts = pred_pts[j].cpu().numpy()[0]
conf = preds[j]["conf"].cpu().data.numpy()[0]
# mask = mask & (conf > 1.8)
pts_gt = gt_pts[j].detach().cpu().numpy()[0]
H, W = image.shape[:2]
cx = W // 2
cy = H // 2
l, t = cx - 112, cy - 112
r, b = cx + 112, cy + 112
image = image[t:b, l:r]
mask = mask[t:b, l:r]
pts = pts[t:b, l:r]
pts_gt = pts_gt[t:b, l:r]
#### Align predicted 3D points to the ground truth
pts[..., -1] += gt_shift_z.cpu().numpy().item()
pts = geotrf(in_camera1, pts)
pts_gt[..., -1] += gt_shift_z.cpu().numpy().item()
pts_gt = geotrf(in_camera1, pts_gt)
images_all.append((image[None, ...] + 1.0) / 2.0)
pts_all.append(pts[None, ...])
pts_gt_all.append(pts_gt[None, ...])
masks_all.append(mask[None, ...])
conf_all.append(conf[None, ...])
images_all = np.concatenate(images_all, axis=0)
pts_all = np.concatenate(pts_all, axis=0)
pts_gt_all = np.concatenate(pts_gt_all, axis=0)
masks_all = np.concatenate(masks_all, axis=0)
scene_id = view["label"][0].rsplit("/", 1)[0]
save_params = {}
save_params["images_all"] = images_all
save_params["pts_all"] = pts_all
save_params["pts_gt_all"] = pts_gt_all
save_params["masks_all"] = masks_all
np.save(
os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"),
save_params,
)
if "DTU" in name_data:
threshold = 100
else:
threshold = 0.1
pts_all_masked = pts_all[masks_all > 0]
pts_gt_all_masked = pts_gt_all[masks_all > 0]
images_all_masked = images_all[masks_all > 0]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(
pts_all_masked.reshape(-1, 3)
)
pcd.colors = o3d.utility.Vector3dVector(
images_all_masked.reshape(-1, 3)
)
o3d.io.write_point_cloud(
os.path.join(
save_path, f"{scene_id.replace('/', '_')}-mask.ply"
),
pcd,
)
pcd_gt = o3d.geometry.PointCloud()
pcd_gt.points = o3d.utility.Vector3dVector(
pts_gt_all_masked.reshape(-1, 3)
)
pcd_gt.colors = o3d.utility.Vector3dVector(
images_all_masked.reshape(-1, 3)
)
o3d.io.write_point_cloud(
os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"),
pcd_gt,
)
trans_init = np.eye(4)
reg_p2p = o3d.pipelines.registration.registration_icp(
pcd,
pcd_gt,
threshold,
trans_init,
o3d.pipelines.registration.TransformationEstimationPointToPoint(),
)
transformation = reg_p2p.transformation
pcd = pcd.transform(transformation)
pcd.estimate_normals()
pcd_gt.estimate_normals()
gt_normal = np.asarray(pcd_gt.normals)
pred_normal = np.asarray(pcd.normals)
acc, acc_med, nc1, nc1_med = accuracy(
pcd_gt.points, pcd.points, gt_normal, pred_normal
)
comp, comp_med, nc2, nc2_med = completion(
pcd_gt.points, pcd.points, gt_normal, pred_normal
)
print(
f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}"
)
print(
f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}",
file=open(log_file, "a"),
)
acc_all += acc
comp_all += comp
nc1_all += nc1
nc2_all += nc2
acc_all_med += acc_med
comp_all_med += comp_med
nc1_all_med += nc1_med
nc2_all_med += nc2_med
# release cuda memory
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
# Get depth from pcd and run TSDFusion
if accelerator.is_main_process:
to_write = ""
# Copy the error log from each process to the main error log
for i in range(8):
if not os.path.exists(osp.join(save_path, f"logs_{i}.txt")):
break
with open(osp.join(save_path, f"logs_{i}.txt"), "r") as f_sub:
to_write += f_sub.read()
with open(osp.join(save_path, f"logs_all.txt"), "w") as f:
log_data = to_write
metrics = defaultdict(list)
for line in log_data.strip().split("\n"):
match = regex.match(line)
if match:
data = match.groupdict()
# Exclude 'scene_id' from metrics as it's an identifier
for key, value in data.items():
if key != "scene_id":
metrics[key].append(float(value))
metrics["nc"].append(
(float(data["nc1"]) + float(data["nc2"])) / 2
)
metrics["nc_med"].append(
(float(data["nc1_med"]) + float(data["nc2_med"])) / 2
)
mean_metrics = {
metric: sum(values) / len(values)
for metric, values in metrics.items()
}
c_name = "mean"
print_str = f"{c_name.ljust(20)}: "
for m_name in mean_metrics:
print_num = np.mean(mean_metrics[m_name])
print_str = print_str + f"{m_name}: {print_num:.3f} | "
print_str = print_str + "\n"
f.write(to_write + print_str)
from collections import defaultdict
import re
pattern = r"""
Idx:\s*(?P<scene_id>[^,]+),\s*
Acc:\s*(?P<acc>[^,]+),\s*
Comp:\s*(?P<comp>[^,]+),\s*
NC1:\s*(?P<nc1>[^,]+),\s*
NC2:\s*(?P<nc2>[^,]+)\s*-\s*
Acc_med:\s*(?P<acc_med>[^,]+),\s*
Compc_med:\s*(?P<comp_med>[^,]+),\s*
NC1c_med:\s*(?P<nc1_med>[^,]+),\s*
NC2c_med:\s*(?P<nc2_med>[^,]+)
"""
regex = re.compile(pattern, re.VERBOSE)
if __name__ == "__main__":
parser = get_args_parser()
args = parser.parse_args()
main(args)
|