File size: 16,025 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
import time
import torch
import argparse
import numpy as np
import open3d as o3d
import os.path as osp
from torch.utils.data import DataLoader
from add_ckpt_path import add_path_to_dust3r
from accelerate import Accelerator
from torch.utils.data._utils.collate import default_collate
import tempfile
from tqdm import tqdm


def get_args_parser():
    parser = argparse.ArgumentParser("3D Reconstruction evaluation", add_help=False)
    parser.add_argument(
        "--weights",
        type=str,
        default="",
        help="ckpt name",
    )
    parser.add_argument("--device", type=str, default="cuda:0", help="device")
    parser.add_argument("--model_name", type=str, default="")
    parser.add_argument(
        "--conf_thresh", type=float, default=0.0, help="confidence threshold"
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="",
        help="value for outdir",
    )
    parser.add_argument("--size", type=int, default=512)
    parser.add_argument("--revisit", type=int, default=1, help="revisit times")
    parser.add_argument("--freeze", action="store_true")
    return parser


def main(args):
    add_path_to_dust3r(args.weights)
    from eval.mv_recon.data import SevenScenes, NRGBD
    from eval.mv_recon.utils import accuracy, completion

    if args.size == 512:
        resolution = (512, 384)
    elif args.size == 224:
        resolution = 224
    else:
        raise NotImplementedError
    datasets_all = {
        "7scenes": SevenScenes(
            split="test",
            ROOT="./data/7scenes",
            resolution=resolution,
            num_seq=1,
            full_video=True,
            kf_every=200,
        ),  # 20),
        "NRGBD": NRGBD(
            split="test",
            ROOT="./data/neural_rgbd",
            resolution=resolution,
            num_seq=1,
            full_video=True,
            kf_every=500,
        ),
    }

    accelerator = Accelerator()
    device = accelerator.device
    model_name = args.model_name
    if model_name == "ours" or model_name == "cut3r":
        from dust3r.model import ARCroco3DStereo
        from eval.mv_recon.criterion import Regr3D_t_ScaleShiftInv, L21
        from dust3r.utils.geometry import geotrf
        from copy import deepcopy

        model = ARCroco3DStereo.from_pretrained(args.weights).to(device)
        model.eval()
    else:
        raise NotImplementedError
    os.makedirs(args.output_dir, exist_ok=True)

    criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True)

    with torch.no_grad():
        for name_data, dataset in datasets_all.items():
            save_path = osp.join(args.output_dir, name_data)
            os.makedirs(save_path, exist_ok=True)
            log_file = osp.join(save_path, f"logs_{accelerator.process_index}.txt")

            acc_all = 0
            acc_all_med = 0
            comp_all = 0
            comp_all_med = 0
            nc1_all = 0
            nc1_all_med = 0
            nc2_all = 0
            nc2_all_med = 0

            fps_all = []
            time_all = []

            with accelerator.split_between_processes(list(range(len(dataset)))) as idxs:
                for data_idx in tqdm(idxs):
                    batch = default_collate([dataset[data_idx]])
                    ignore_keys = set(
                        [
                            "depthmap",
                            "dataset",
                            "label",
                            "instance",
                            "idx",
                            "true_shape",
                            "rng",
                        ]
                    )
                    for view in batch:
                        for name in view.keys():  # pseudo_focal
                            if name in ignore_keys:
                                continue
                            if isinstance(view[name], tuple) or isinstance(
                                view[name], list
                            ):
                                view[name] = [
                                    x.to(device, non_blocking=True) for x in view[name]
                                ]
                            else:
                                view[name] = view[name].to(device, non_blocking=True)

                    if model_name == "ours" or model_name == "cut3r":
                        revisit = args.revisit
                        update = not args.freeze
                        if revisit > 1:
                            # repeat input for 'revisit' times
                            new_views = []
                            for r in range(revisit):
                                for i in range(len(batch)):
                                    new_view = deepcopy(batch[i])
                                    new_view["idx"] = [
                                        (r * len(batch) + i)
                                        for _ in range(len(batch[i]["idx"]))
                                    ]
                                    new_view["instance"] = [
                                        str(r * len(batch) + i)
                                        for _ in range(len(batch[i]["instance"]))
                                    ]
                                    if r > 0:
                                        if not update:
                                            new_view["update"] = torch.zeros_like(
                                                batch[i]["update"]
                                            ).bool()
                                    new_views.append(new_view)
                            batch = new_views
                        with torch.cuda.amp.autocast(enabled=False):
                            start = time.time()
                            output = model(batch)
                            end = time.time()
                            preds, batch = output.ress, output.views
                        valid_length = len(preds) // revisit
                        preds = preds[-valid_length:]
                        batch = batch[-valid_length:]
                        fps = len(batch) / (end - start)
                        print(
                            f"Finished reconstruction for {name_data} {data_idx+1}/{len(dataset)}, FPS: {fps:.2f}"
                        )
                        # continue
                        fps_all.append(fps)
                        time_all.append(end - start)

                        # Evaluation
                        print(f"Evaluation for {name_data} {data_idx+1}/{len(dataset)}")
                        gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
                            criterion.get_all_pts3d_t(batch, preds)
                        )
                        pred_scale, gt_scale, pred_shift_z, gt_shift_z = (
                            monitoring["pred_scale"],
                            monitoring["gt_scale"],
                            monitoring["pred_shift_z"],
                            monitoring["gt_shift_z"],
                        )

                        in_camera1 = None
                        pts_all = []
                        pts_gt_all = []
                        images_all = []
                        masks_all = []
                        conf_all = []

                        for j, view in enumerate(batch):
                            if in_camera1 is None:
                                in_camera1 = view["camera_pose"][0].cpu()

                            image = view["img"].permute(0, 2, 3, 1).cpu().numpy()[0]
                            mask = view["valid_mask"].cpu().numpy()[0]

                            # pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
                            pts = pred_pts[j].cpu().numpy()[0]
                            conf = preds[j]["conf"].cpu().data.numpy()[0]
                            # mask = mask & (conf > 1.8)

                            pts_gt = gt_pts[j].detach().cpu().numpy()[0]

                            H, W = image.shape[:2]
                            cx = W // 2
                            cy = H // 2
                            l, t = cx - 112, cy - 112
                            r, b = cx + 112, cy + 112
                            image = image[t:b, l:r]
                            mask = mask[t:b, l:r]
                            pts = pts[t:b, l:r]
                            pts_gt = pts_gt[t:b, l:r]

                            #### Align predicted 3D points to the ground truth
                            pts[..., -1] += gt_shift_z.cpu().numpy().item()
                            pts = geotrf(in_camera1, pts)

                            pts_gt[..., -1] += gt_shift_z.cpu().numpy().item()
                            pts_gt = geotrf(in_camera1, pts_gt)

                            images_all.append((image[None, ...] + 1.0) / 2.0)
                            pts_all.append(pts[None, ...])
                            pts_gt_all.append(pts_gt[None, ...])
                            masks_all.append(mask[None, ...])
                            conf_all.append(conf[None, ...])

                    images_all = np.concatenate(images_all, axis=0)
                    pts_all = np.concatenate(pts_all, axis=0)
                    pts_gt_all = np.concatenate(pts_gt_all, axis=0)
                    masks_all = np.concatenate(masks_all, axis=0)

                    scene_id = view["label"][0].rsplit("/", 1)[0]

                    save_params = {}

                    save_params["images_all"] = images_all
                    save_params["pts_all"] = pts_all
                    save_params["pts_gt_all"] = pts_gt_all
                    save_params["masks_all"] = masks_all

                    np.save(
                        os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"),
                        save_params,
                    )

                    if "DTU" in name_data:
                        threshold = 100
                    else:
                        threshold = 0.1

                    pts_all_masked = pts_all[masks_all > 0]
                    pts_gt_all_masked = pts_gt_all[masks_all > 0]
                    images_all_masked = images_all[masks_all > 0]

                    pcd = o3d.geometry.PointCloud()
                    pcd.points = o3d.utility.Vector3dVector(
                        pts_all_masked.reshape(-1, 3)
                    )
                    pcd.colors = o3d.utility.Vector3dVector(
                        images_all_masked.reshape(-1, 3)
                    )
                    o3d.io.write_point_cloud(
                        os.path.join(
                            save_path, f"{scene_id.replace('/', '_')}-mask.ply"
                        ),
                        pcd,
                    )

                    pcd_gt = o3d.geometry.PointCloud()
                    pcd_gt.points = o3d.utility.Vector3dVector(
                        pts_gt_all_masked.reshape(-1, 3)
                    )
                    pcd_gt.colors = o3d.utility.Vector3dVector(
                        images_all_masked.reshape(-1, 3)
                    )
                    o3d.io.write_point_cloud(
                        os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"),
                        pcd_gt,
                    )

                    trans_init = np.eye(4)

                    reg_p2p = o3d.pipelines.registration.registration_icp(
                        pcd,
                        pcd_gt,
                        threshold,
                        trans_init,
                        o3d.pipelines.registration.TransformationEstimationPointToPoint(),
                    )

                    transformation = reg_p2p.transformation

                    pcd = pcd.transform(transformation)
                    pcd.estimate_normals()
                    pcd_gt.estimate_normals()

                    gt_normal = np.asarray(pcd_gt.normals)
                    pred_normal = np.asarray(pcd.normals)

                    acc, acc_med, nc1, nc1_med = accuracy(
                        pcd_gt.points, pcd.points, gt_normal, pred_normal
                    )
                    comp, comp_med, nc2, nc2_med = completion(
                        pcd_gt.points, pcd.points, gt_normal, pred_normal
                    )
                    print(
                        f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}"
                    )
                    print(
                        f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}",
                        file=open(log_file, "a"),
                    )

                    acc_all += acc
                    comp_all += comp
                    nc1_all += nc1
                    nc2_all += nc2

                    acc_all_med += acc_med
                    comp_all_med += comp_med
                    nc1_all_med += nc1_med
                    nc2_all_med += nc2_med

                    # release cuda memory
                    torch.cuda.empty_cache()

            accelerator.wait_for_everyone()
            # Get depth from pcd and run TSDFusion
            if accelerator.is_main_process:
                to_write = ""
                # Copy the error log from each process to the main error log
                for i in range(8):
                    if not os.path.exists(osp.join(save_path, f"logs_{i}.txt")):
                        break
                    with open(osp.join(save_path, f"logs_{i}.txt"), "r") as f_sub:
                        to_write += f_sub.read()

                with open(osp.join(save_path, f"logs_all.txt"), "w") as f:
                    log_data = to_write
                    metrics = defaultdict(list)
                    for line in log_data.strip().split("\n"):
                        match = regex.match(line)
                        if match:
                            data = match.groupdict()
                            # Exclude 'scene_id' from metrics as it's an identifier
                            for key, value in data.items():
                                if key != "scene_id":
                                    metrics[key].append(float(value))
                            metrics["nc"].append(
                                (float(data["nc1"]) + float(data["nc2"])) / 2
                            )
                            metrics["nc_med"].append(
                                (float(data["nc1_med"]) + float(data["nc2_med"])) / 2
                            )
                    mean_metrics = {
                        metric: sum(values) / len(values)
                        for metric, values in metrics.items()
                    }

                    c_name = "mean"
                    print_str = f"{c_name.ljust(20)}: "
                    for m_name in mean_metrics:
                        print_num = np.mean(mean_metrics[m_name])
                        print_str = print_str + f"{m_name}: {print_num:.3f} | "
                    print_str = print_str + "\n"
                    f.write(to_write + print_str)


from collections import defaultdict
import re

pattern = r"""
    Idx:\s*(?P<scene_id>[^,]+),\s*
    Acc:\s*(?P<acc>[^,]+),\s*
    Comp:\s*(?P<comp>[^,]+),\s*
    NC1:\s*(?P<nc1>[^,]+),\s*
    NC2:\s*(?P<nc2>[^,]+)\s*-\s*
    Acc_med:\s*(?P<acc_med>[^,]+),\s*
    Compc_med:\s*(?P<comp_med>[^,]+),\s*
    NC1c_med:\s*(?P<nc1_med>[^,]+),\s*
    NC2c_med:\s*(?P<nc2_med>[^,]+)
"""

regex = re.compile(pattern, re.VERBOSE)


if __name__ == "__main__":
    parser = get_args_parser()
    args = parser.parse_args()

    main(args)