File size: 13,480 Bytes
0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 0676715 dc68042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import sys
import streamlit as st
import pandas as pd
import joblib
import time
import numpy as np
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem import AllChem
from rdkit import RDLogger
import uuid
from datasets import load_dataset
import requests
from io import BytesIO
import urllib.request
import warnings
warnings.filterwarnings('ignore')
from model import OnTheFlyModel, HitSelectorByOverlap, CommunityDetector, task_evaluator
from myFunctions import *
from morgan_desc import *
from physchem_desc import *
from fragment_embedder import FragmentEmbedder
import onnxruntime as rt
st.set_page_config(
page_title="Ligand Discovery 5: On-the-Fly ML Model",
page_icon=":home:",
layout="wide", # "centered",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.css-13sdm1b.e16nr0p33 {
margin-top: -75px;
}
</style>
""", unsafe_allow_html=True)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
#header {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
session_id = get_session_id()
RDLogger.DisableLog("rdApp.*")
root = os.path.dirname(os.path.abspath(__file__))
cache_folder = os.path.join(root, ".", "cache")
if not os.path.exists(cache_folder):
os.mkdir(cache_folder)
clear_old_cache(cache_folder, hours=24)
old_clusters_cache_file = None
df = None
# Functions and variables
CRF_PATTERN = "CC1(CCC#C)N=N1"
CRF_PATTERN_0 = "C#CC"
CRF_PATTERN_1 = "N=N"
crf_0 = "C#CCC1(N=N1)CCNC(CC)=O"
crf_0 = "ONC(=O)CCC1(CCC#C)N=N1"
crf_1 = "C#CCC1(N=N1)CCC(=O)[N]"
SIMILARITY_PERCENTILES = [95, 90]
hits, fid_prom, pid_prom = load_hits()
pid2name, name2pid, any2pid = pid2name_mapper()
fid2smi = load_fid2smi()
st.sidebar.title("Ligand Discovery 5: On-the-Fly Model")
st.sidebar.write("this app builds a quick ML model for your proteins of interest")
st.sidebar.subheader(":mag: UniProt Accession IDs or Gene Name")
text = st.sidebar.text_area("For example, you can query VDAC2", placeholder = "VDAC2", help="Write one protein per line. UniProt AC format is preferred. Only proteins available in the Ligand Discovery interactome will be considered")
input_tokens = text.split()
input_pids = []
for it in input_tokens:
if it in any2pid:
pid = any2pid[it]
if pid in pid_prom:
input_pids += [any2pid[it]]
input_data = pids_to_dataframe(input_pids, pid2name, pid_prom)
tfidf = True
if input_data.shape[0] == 0:
has_input = False
if len(input_tokens) > 0:
st.sidebar.warning(
"None of your input proteins was found in the Ligand Discovery interactome.".format(
len(input_pids), len(input_tokens)
)
)
else:
has_input = True
if has_input:
print("Instantiating on the fly model")
model = OnTheFlyModel()
is_fitted = False
st.sidebar.info(
"{0} out of {1} input proteins were found in the Ligand Discovery interactome, corresponding to all statistically significant fragment-protein pairs.".format(
len(input_pids), len(input_tokens)
)
)
st.sidebar.dataframe(input_data, hide_index=True)
uniprot_inputs = list(input_data["UniprotAC"])
if len(uniprot_inputs) == 1:
print("Only one protein")
clusters_of_proteins = [uniprot_inputs]
else:
graph = get_protein_graph(uniprot_inputs)
auroc_cut = 0.7
graph_key = "-".join(sorted(graph.nodes()))
clusters_cache_file = os.path.join(
root, "..", "cache", session_id + "_clusters.joblib"
)
clusters_of_proteins = None
if os.path.exists(clusters_cache_file):
gk, clu = joblib.load(clusters_cache_file)
if gk == graph_key:
clusters_of_proteins = clu
if clusters_of_proteins is None:
if old_clusters_cache_file is not None:
os.path.remove(old_clusters_cache_file)
community_detector = CommunityDetector(tfidf=tfidf, auroc_cut=auroc_cut)
clusters_of_proteins = community_detector.cluster(model, graph)
clusters_of_proteins = clusters_of_proteins["ok"]
joblib.dump((graph_key, clusters_of_proteins), clusters_cache_file)
old_clusters_cache_file = clusters_cache_file
cols = st.columns([0.3, 0.7])
col = cols[0]
col.subheader(":robot_face: Quick modeling")
only_one_option = False
if len(clusters_of_proteins) == 1:
if sorted(clusters_of_proteins[0]) == sorted(list(input_data["UniprotAC"])):
only_one_option = True
options = []
if not only_one_option:
for prot_clust in clusters_of_proteins:
options += [", ".join(sorted([pid2name[pid] for pid in prot_clust]))]
options += ["Full set of proteins"]
else:
if len(clusters_of_proteins[0]) == 1:
options = [pid2name[clusters_of_proteins[0][0]]]
else:
options = ["Full set of proteins"]
selected_cluster = col.radio(
"These are some suggested groups of proteins for modeling",
options=options,
)
if selected_cluster == "Full set of proteins":
selected_cluster = uniprot_inputs
else:
selected_cluster = [name2pid[n] for n in selected_cluster.split(", ")]
print("Cluster selection done")
default_max_hit_fragments = 100
default_max_fragment_prom = 500
max_hit_fragments = col.slider(
"Maximum number of positives",
min_value=10,
max_value=200,
step=10,
value=default_max_hit_fragments,
help="Fragments will be ranked by specificity, i.e. by ascending value of promiscuity.",
)
max_fragment_prom = col.slider(
"Maximum promiscuity of included fragments",
min_value=50,
max_value=500,
step=10,
value=default_max_fragment_prom,
help="Maximum number of proteins for included fragments.",
)
uniprot_acs = list(selected_cluster)
data = HitSelectorByOverlap(uniprot_acs=uniprot_acs, tfidf=tfidf).select(
max_hit_fragments=max_hit_fragments, max_fragment_promiscuity=max_fragment_prom
)
print("Selecting hits by overlap")
num_positives = len(data[data["y"] == 1])
num_total = len(data[data["y"] != -1])
subcols = col.columns(3)
subcols[0].metric(
"Positives",
value=num_positives,
help="Number of positive fragments (i.e. fragments that interact with at least one of the selected proteins). Fragments are ranked by their sum of TF-IDF scores, meaning that the fragments that interact with more proteins will be ranked higher. Interacting with specific proteins will also uprank fragments.",
)
subcols[1].metric(
"Total",
value=num_total,
help="Total number of fragments (positive and negative) used in the model. This value decreases as you decrease the maximum promiscuity of included fragments threshold.",
)
subcols[2].metric(
"Rate",
value="{0:.1f}%".format(num_positives / num_total * 100),
help="Ratio of positives to total fragments.",
)
if num_positives == 0:
col.error(
"No positives available. We cannot build a model with no positive data."
)
is_fitted = False
else:
task_evaluation = task_evaluator(model, data)
subcols[0].metric(
label="Corr. prom",
value="{0:.3f}".format(task_evaluation["ref_rho"]),
help="Correlation between model outcomes and fragment promiscuity predictors. If you wish to have models that are less correlated with promiscuity, consider lowering the maximum promiscuity of included fragments threshold.",
)
subcols[1].metric(
label="Frag. promiscuity",
value="{0:.1f}".format(task_evaluation["prom"]),
help="Average promiscuity of positive fragments. This helps understand how promiscuous the fragments are that are being used to build the model, with a focus on the positive class.",
)
subcols[2].metric(
label="Interactors ({0})".format(len(uniprot_acs)),
value="{0:.1f}".format(task_evaluation["hits"]),
help="Average number of query proteins that interact with positive fragments. If you want this number to be higher, consider decreasing the maximum number of positives threshold in order to focus on the fragments that have the highest protein coverage.",
)
print("Task evaluator done")
expander = col.expander("View positives")
positives_data = data[data["y"] == 1]
pos_fids = sorted(positives_data["fid"])
pos_smis = [fid2smi[fid] for fid in pos_fids]
expander.dataframe(
pd.DataFrame({"FragmentID": pos_fids, "SMILES": pos_smis}), hide_index=True
)
expander = col.expander("View negatives")
negatives_data = data[data["y"] == 0]
neg_fids = sorted(negatives_data["fid"])
neg_smis = [fid2smi[fid] for fid in neg_fids]
expander.dataframe(
pd.DataFrame({"FragmentID": neg_fids, "SMILES": neg_smis}), hide_index=True
)
if num_positives < 5:
col.warning("Not enough data to estimate AUROC.")
else:
auroc = task_evaluation["auroc"]
col.metric(
"AUROC estimation", value="{0:.3f} ± {1:.3f}".format(auroc[0], auroc[1])
)
subcols = col.columns(3)
is_ready = True
if is_ready:
col = cols[1]
col.subheader(":crystal_ball: Make predictions")
input_prediction_tokens = col.text_area(
label="Input your SMILES of interest. Ideally, they should have the diazirine fragment",
help="Paste molecules in SMILES format, one per line. Try to include the CRF pattern in your input molecules. If no CRF pattern is present, it will be automatically attached.",
)
col.markdown("Below you can find a few suggested molecules to try out:")
col.text("\n".join(pos_smis[:2] + neg_smis[:2]))
pred_tokens = [t for t in input_prediction_tokens.split("\n") if t != ""]
smiles_list = []
original_smiles_list = []
have_crf_count = 0
attached_crf_count = 0
for token in pred_tokens:
if not is_valid_smiles(token):
continue
smi = token
if not has_crf(Chem.MolFromSmiles(smi), CRF_PATTERN):
smi = attach_crf(smi)
if smi is None:
continue
attached_crf_count += 1
else:
have_crf_count += 1
smiles_list += [smi]
original_smiles_list += [token]
if len(smiles_list) == 0:
has_prediction_input = False
if len(pred_tokens) > 0:
col.warning(
"No valid inputs were found. Please make sure the CRF pattern is present: {0}".format(
CRF_PATTERN
)
)
else:
has_prediction_input = True
if has_prediction_input:
model.fit(data["y"])
col.info(
"{0} out of {1} input molecules are valid. Of these, {2} had the CRF already, and for {3} of them it was automatically attached".format(
len(smiles_list),
len(pred_tokens),
have_crf_count,
attached_crf_count,
)
)
do_tau = False
if do_tau:
y_hat, tau_ref, tau_train = model.predict_proba_and_tau(smiles_list)
dr = pd.DataFrame(
{
"SMILES": smiles_list,
"OriginalSMILES": original_smiles_list,
"Score": y_hat,
"Tau": tau_ref,
"TauTrain": tau_train,
}
)
for v in dr.values:
expander = col.expander(
"Score: `{0:.3f}` | Tau: `{1:.2f}` | Tau Train: `{2:.2f}`| SMILES: `{3}`".format(
v[1], v[2], v[3], v[0]
)
)
expander.image(get_fragment_image(v[0]))
else:
y_hat = model.predict_proba(smiles_list)[:, 1]
dr = pd.DataFrame(
{
"SMILES": smiles_list,
"OriginalSMILES": original_smiles_list,
"Score": y_hat,
}
)
for v in dr.values:
expander = col.expander(
"Score: `{0:.3f}` | SMILES: `{1}`".format(v[2], v[1])
)
expander.image(get_fragment_image(v[1]))
dr_ = dr[["OriginalSMILES", "Score"]]
dr_.rename(columns={"OriginalSMILES": "SMILES"}, inplace=True)
col.download_button(
label="Download results as CSV",
data=dr_.to_csv(),
file_name="prediction_output.csv",
mime="text/csv",
)
del model |