ligdis commited on
Commit
dc68042
·
verified ·
1 Parent(s): 86ef43f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -15
app.py CHANGED
@@ -78,18 +78,13 @@ hits, fid_prom, pid_prom = load_hits()
78
  pid2name, name2pid, any2pid = pid2name_mapper()
79
  fid2smi = load_fid2smi()
80
 
 
 
81
 
82
- st.title("Ligand Discovery 5: On-the-Fly ML Models")
83
- st.write("input your proteins of interest and we'll build a quick ML model")
84
 
85
- cols = st.columns([1, 1, 2.4])
86
- col = cols[0]
87
- col.subheader(":mag: input your proteins")
88
 
89
- text = col.text_area(
90
- "input proteins in UniProt AC format or Gene Name. For example, you can query VDAC2",
91
- help="Write one protein per line. UniProt AC format is preferred. Only proteins available in the Ligand Discovery interactome will be considered",
92
- )
93
  input_tokens = text.split()
94
  input_pids = []
95
  for it in input_tokens:
@@ -105,7 +100,7 @@ tfidf = True
105
  if input_data.shape[0] == 0:
106
  has_input = False
107
  if len(input_tokens) > 0:
108
- col.warning(
109
  "None of your input proteins was found in the Ligand Discovery interactome.".format(
110
  len(input_pids), len(input_tokens)
111
  )
@@ -117,13 +112,13 @@ if has_input:
117
  print("Instantiating on the fly model")
118
  model = OnTheFlyModel()
119
  is_fitted = False
120
- col.info(
121
  "{0} out of {1} input proteins were found in the Ligand Discovery interactome, corresponding to all statistically significant fragment-protein pairs.".format(
122
  len(input_pids), len(input_tokens)
123
  )
124
  )
125
 
126
- col.dataframe(input_data, hide_index=True)
127
 
128
  uniprot_inputs = list(input_data["UniprotAC"])
129
  if len(uniprot_inputs) == 1:
@@ -150,7 +145,8 @@ if has_input:
150
  joblib.dump((graph_key, clusters_of_proteins), clusters_cache_file)
151
  old_clusters_cache_file = clusters_cache_file
152
 
153
- col = cols[1]
 
154
 
155
  col.subheader(":robot_face: Quick modeling")
156
 
@@ -284,7 +280,7 @@ if has_input:
284
  is_ready = True
285
 
286
  if is_ready:
287
- col = cols[2]
288
 
289
  col.subheader(":crystal_ball: Make predictions")
290
 
@@ -379,4 +375,4 @@ if has_input:
379
  file_name="prediction_output.csv",
380
  mime="text/csv",
381
  )
382
- del model
 
78
  pid2name, name2pid, any2pid = pid2name_mapper()
79
  fid2smi = load_fid2smi()
80
 
81
+ st.sidebar.title("Ligand Discovery 5: On-the-Fly Model")
82
+ st.sidebar.write("this app builds a quick ML model for your proteins of interest")
83
 
84
+ st.sidebar.subheader(":mag: UniProt Accession IDs or Gene Name")
 
85
 
86
+ text = st.sidebar.text_area("For example, you can query VDAC2", placeholder = "VDAC2", help="Write one protein per line. UniProt AC format is preferred. Only proteins available in the Ligand Discovery interactome will be considered")
 
 
87
 
 
 
 
 
88
  input_tokens = text.split()
89
  input_pids = []
90
  for it in input_tokens:
 
100
  if input_data.shape[0] == 0:
101
  has_input = False
102
  if len(input_tokens) > 0:
103
+ st.sidebar.warning(
104
  "None of your input proteins was found in the Ligand Discovery interactome.".format(
105
  len(input_pids), len(input_tokens)
106
  )
 
112
  print("Instantiating on the fly model")
113
  model = OnTheFlyModel()
114
  is_fitted = False
115
+ st.sidebar.info(
116
  "{0} out of {1} input proteins were found in the Ligand Discovery interactome, corresponding to all statistically significant fragment-protein pairs.".format(
117
  len(input_pids), len(input_tokens)
118
  )
119
  )
120
 
121
+ st.sidebar.dataframe(input_data, hide_index=True)
122
 
123
  uniprot_inputs = list(input_data["UniprotAC"])
124
  if len(uniprot_inputs) == 1:
 
145
  joblib.dump((graph_key, clusters_of_proteins), clusters_cache_file)
146
  old_clusters_cache_file = clusters_cache_file
147
 
148
+ cols = st.columns([0.3, 0.7])
149
+ col = cols[0]
150
 
151
  col.subheader(":robot_face: Quick modeling")
152
 
 
280
  is_ready = True
281
 
282
  if is_ready:
283
+ col = cols[1]
284
 
285
  col.subheader(":crystal_ball: Make predictions")
286
 
 
375
  file_name="prediction_output.csv",
376
  mime="text/csv",
377
  )
378
+ del model