1
File size: 15,891 Bytes
5a5d9ef
8290bb0
5a5d9ef
 
 
 
 
 
8290bb0
5a5d9ef
 
 
 
8290bb0
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
5a5d9ef
 
 
 
 
 
 
 
 
436d5a1
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
5a5d9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436d5a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# streamlit_app.py
import streamlit as st
import pandas as pd
pd.options.mode.chained_assignment = None  # default='warn'
import numpy as np
from io import BytesIO
import os
import sys

# relative imports
ROOT = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(ROOT, "./src/"))
from agstyler import PINLEFT, PRECISION_TWO, draw_grid

st.set_page_config(
    page_title="Fragment-Protein interactions in Chemical Proteomics Screening", 
    page_icon=":home:",
    layout="wide", # "centered",
    initial_sidebar_state="expanded"
)

st.markdown("""
  <style>
    .css-13sdm1b.e16nr0p33 {
      margin-top: -75px;
    }
  </style>
""", unsafe_allow_html=True)

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            #header {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True) 

pIdDf = pd.read_csv(os.path.join(ROOT, "./data/general/proteinNames4.tsv"), sep="\t")

pId = pIdDf['UniProtID'].values
pIdDes = pIdDf['Description'].values

def applyFilters(df, pFil, pAdjFil, hitFil):
  if pFil != 'no filter':
    if pFil == '< 0.05':
      df = df[df['ml10p'] > 1.30103]
    else:
      df = df[df['ml10p'] > 2]
      
  if pAdjFil != 'no filter':
    if pAdjFil == '< 0.05':
      df = df[df['ml10adjP'] > 1.30103]
    elif pAdjFil == '< 0.1':
      df = df[df['ml10adjP'] > 1]
    else:
      df = df[df['ml10adjP'] > 0.60206]
      
  if hitFil != 'no filter':
    if hitFil == 'Low':
      df = df[df['mdfClass'] >= 1]
    elif hitFil == 'Medium (hits)':
      df = df[df['mdfClass'] >= 2]
    elif hitFil == 'Low (hits)':
      df = df[df['mdfClass'] >= 1]
    else:
      df = df[df['mdfClass'] == 3]
      
  return df

def getVarText(df):
  if (len(df.index)) > 0:
    bestProt = df["geneName"].values[0]
    numProtHitss = len(df.index)
    df.index = np.arange(1,len(df)+1)
    protList = df.index[df["accession"]==myPid].tolist()
    if len(protList) > 0:
      protRank = protList[0]
      varText1 = "hit rank is"
      varText2 = "is best"
    else:
      varText1 = "is not a hit"
      protRank = ""
      varText2 = "protein is best"
    del protList
  else:
    bestProt = "No "
    numProtHitss = 0
    varText1 = "is not a hit"
    protRank = ""
    varText2 = ""
  return [bestProt, numProtHitss, protRank, varText1, varText2]


st.sidebar.title("Fragment-Protein Interactions")
st.title("Chemical Proteomics Screening")

help_input3='''
    
    use **:blue[UniProt Accession]**, Short Gene Name(s) or Protein Description to search\n
    **Tip**:\n
    To change selected protein, **:red[NO]** need to select whole existing term, delete and type new.\n
    :blue[Just start to type new protein, old text will be automatically cleared]'''

pIdIndex = st.sidebar.selectbox(label = "Select Protein", help = help_input3, options = range(len(pIdDes)), format_func= lambda x: pIdDes[x], index= 1706)

myPid = pId[pIdIndex]

intDfOri = pd.read_csv(os.path.join(ROOT, "./data/general/finalScreenTSV00"), sep="\t")
column_names = intDfOri.columns
finalScreenSuffixes = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13"]
for eachSuffix in finalScreenSuffixes:
 fileAppend = "./data/general/finalScreenTSV" + eachSuffix
 df_temp = pd.read_csv(os.path.join(ROOT, fileAppend), header=None, sep="\t")
 df_temp.columns = intDfOri.columns
 intDfOri = pd.concat([intDfOri, df_temp], ignore_index=True)
#intDfOri = pd.read_csv(os.path.join(ROOT, "./data/general/finalScreen.tsv"), sep="\t")

fpDf = pd.read_csv(os.path.join(ROOT, "./data/general/finalFpTSV00"), sep="\t")
column_names = fpDf.columns
finalFpSuffixes = ["01", "02"]
for eachSuffix in finalFpSuffixes:
 fileAppend = "./data/general/finalFpTSV" + eachSuffix
 df_temp = pd.read_csv(os.path.join(ROOT, fileAppend), header=None, sep="\t")
 df_temp.columns = fpDf.columns
 fpDf = pd.concat([fpDf, df_temp], ignore_index=True)
#fpDf = pd.read_csv(os.path.join(ROOT, "./data/general/finalFp.tsv"), sep="\t")

intDf = intDfOri[intDfOri["accession"]==myPid]

if len(intDf) == 0:
  st.sidebar.write("We did **:red[not]** detect selected protein interacting with any fragment in our screen, try another protein")
else:
  selectedGeneName = intDf["geneName"].values[0]
  tempDf = applyFilters(intDf, '< 0.05', '< 0.25', 'Medium (hits)')
  if (len(tempDf.index)) > 0:
    tempDf = tempDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
    bestFrag = tempDf["fragId"].values[0]
    top5Frags = tempDf["fragId"].values[0:5]
    numLigaHits = len(tempDf.index) # numLigaHits is already present in base input table
    varText3 = "is best"
  else:
    bestFrag = "No"
    varText3 = ""
    numLigaHits = 0
    
######## Screening Protein Centric View ############      

  st.write("**Selected Protein**: ", pIdDes[pIdIndex])
  st.markdown("""---""")

  st.subheader(f"First generation fragments (Gen1) that enrich **:blue[{selectedGeneName}]** over background")
  
  numInt = len(intDf.index)
  st.write(f"**:blue[{numInt}]** (out of 407 screened) Gen1 fragments enrich **{selectedGeneName}**. **:blue[{numLigaHits}]**/{numInt} fragments are labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestFrag}]** {varText3} **hit**.")

  if (numLigaHits/407)>0.1:
    hitRatio = np.round((numLigaHits/407)*100, 1) 
    st.write(f"**:blue[{selectedGeneName}]** is a **:red[promiscuous]** protein (**hit**/enriched ratio is **:red[{hitRatio}]**%).")

  col1, col2, col3, colX, colY, colZ = st.columns(6)
  with col1:
    pFilter = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'))
  with col2:
    pAdjFilter = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', '< 0.1', 'no filter', '< 0.05'))
  with col3:
    help_input='''
    
    **:blue[0]**.  no filter\n
    **:blue[1]**.  Low Confidence: Fc > 1,   Median > 1,   p < 0.05, adj.p < 0.25, Rank < 500\n
    **:blue[2]**.  Medium confidence ('**:blue[hits]**'): Fc > 2.3, Median > 1,   p < 0.05, adj.p < 0.25, Rank < 500\n
    **:blue[3]**.  High Confidence (also '**:blue[hits]**'):  Fc > 2.3, Median > 2.3, p < 0.01, adj.p < 0.1,  Rank < 500'''
    mdfClass = st.selectbox(label = "filter Set (**:blue[fS]**)", help = help_input, options = ('Medium (hits)', 'no filter', 'Low', 'High (hits)'))
    
  if len(tempDf.index) == 0:
    st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
    intDf = applyFilters(intDf, 'no filter', 'no filter', 'no filter')
    
  else:
    intDf = applyFilters(intDf, pFilter, pAdjFilter, mdfClass)

  del tempDf
  
  intDf = intDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
    
  col4, col5  = st.columns(2)
  with col4:
    formatter = {
      'fragId': ('Fragment', {**PINLEFT, 'width': 10}),
      'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
      'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
      'protHits': ('# Protein Hits', {'width': 15}),
      'mdfClass': ('fS', {'width': 10})
    }
    data = draw_grid(intDf, formatter=formatter, fit_columns=True, selection='none', max_height=340)
  with col5:
    st.image(os.path.join(ROOT, "./assets/proteinCentric/") + myPid + ".png")
    
  fragId = st.sidebar.selectbox(label = "Select Gen1 Fragment", options = intDf["fragId"])
  intDf2 = intDfOri[intDfOri["fragId"]==fragId]
  
############ Screening Fragment Centric ###############################
  
  st.subheader(f"Proteins enriched by **:blue[{fragId}]**")
  
  tempDf2 = intDfOri[intDfOri["fragId"]==fragId]
  numProtDetected = len(tempDf2.index)
  tempDf2 = applyFilters(tempDf2, '< 0.05', '< 0.25', 'Medium (hits)')

  tempDf2 = tempDf2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
  [bestProt, numProtHits, protRank, varText, varText2] = getVarText(tempDf2)
  
  if len(tempDf2.index) == 0:
    intDf3 = applyFilters(intDf2, 'no filter', 'no filter', 'no filter')
    
  else:
    intDf3 = applyFilters(intDf2, pFilter, pAdjFilter, mdfClass)
  
  intDf3 = intDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
    
  st.sidebar.image(os.path.join(ROOT, "./assets/fragFiguresSingle/") + fragId + ".png")
  
  st.write(f"**:blue[{numProtDetected}]** proteins were enriched by fragment **{fragId}** (Fc compared to **CRF** control). **:blue[{numProtHits}]** of those proteins were labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestProt}]** {varText2} **hit**. **:blue[{selectedGeneName}]** {varText} **:blue[{protRank}]**.")
  
  if (numProtHits/numProtDetected)>0.05:
    fragHitRatio = np.round((numProtHits/numProtDetected)*100, 1) 
    st.write(f"**:blue[{fragId}]** is **:red[promiscuous]** fragment (**hit**/enriched ratio is **:red[{fragHitRatio}]**%).")
  
  col6, col7  = st.columns(2)
  with col6:
    st.image(os.path.join(ROOT, "./assets/ligandVolcanoPlots/") + fragId + ".png")
  with col7:
    if len(tempDf2.index) == 0:
      st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
    formatter = {
      'accession': ('Protein', {**PINLEFT, 'width': 15}),
      'geneName': ('Gene', {**PINLEFT, 'width': 15}),
      'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
      'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
      'ligHits': ('# Fragment Hits', {'width': 15}),
      'mdfClass': ('fS', {'width': 10})
    }
    data = draw_grid(
      intDf3, formatter=formatter, fit_columns=True, selection='none', max_height=340)
  if not isinstance(protRank, str):
    if protRank < 5:
      st.subheader(f"**:blue[{fragId}-{selectedGeneName}]** interaction: :first_place_medal:")
      st.write(f"**:blue[{fragId}]** is in top 5 **Fragment hits** for **{selectedGeneName}**. **:blue[{selectedGeneName}]** is in top 5 **Protein hits** for **{fragId}**.")

  del tempDf2
############# Fingerprinting / Elaborates Data ######################

  gen2List = ["C027", "C028", "C044", "C046", "C064", "C115", "C127", "C160", "C179", "C186", "C197", "C219", "C240", "C270", "C275", "C303", "C310", "C320", "C378", "C391"]
  if fragId in gen2List:
    st.markdown("""---""")
    # st.sidebar.markdown("""---""")
    
############ Elaborates Protein Centric View ##########################
    st.subheader(f"Second generation fragments (Gen2) of **:blue[{fragId}]** that compete **:blue[{selectedGeneName}]**")

    gen1Df = fpDf[fpDf["gen1Lig"]==fragId]
    
    numGen2Ligs = len(np.unique(gen1Df['fragId']))
    
    temp4Df = gen1Df[gen1Df["accession"]==myPid]
    temp4Df = temp4Df[temp4Df["mdfClass"]>=1]
    # temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
    temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
    
    sidebarList1 = temp4Df["fragId"]

    if len(temp4Df.index)>0:
      bestGen2Lig = temp4Df['fragId'].values[0]
      varText5 = "is best Gen2 fragment hit."
    else:
      bestGen2Lig = ""
      varText5 = ""
    
    st.write(f"**:blue[{numGen2Ligs}]** Gen2  fragments were screened in **competition** experiments against Gen1 fragment **{fragId}**. **:blue[{len(temp4Df.index)}]**/{numGen2Ligs} Gen2 fragments of **{fragId}** pass **low** filter Set (**:blue[fS2]**).")
    # **:blue[{bestGen2Lig}]** {varText5}")
    # **compete** **:blue[{selectedGeneName}]** after applying 
    
    formatter = {
      'fragId': ('Gen2', {**PINLEFT, 'width': 10}),
      'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
      'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
      'protHits': ('# Gen2 Protein Hits', {'width': 15}),
      'mdfClass': ('fS2', {'width': 10})
    }
    
    col10, col11 = st.columns(2)
    with col10:
      st.write(f":blue[Hits] (fS2 > 0)")
      if len(temp4Df.index)>0:
        data = draw_grid(
          temp4Df, formatter=formatter, fit_columns=True, selection='none')
      
    temp4Df = gen1Df[gen1Df["accession"]==myPid]
    temp4Df = temp4Df[temp4Df["mdfClass"] < 1]
    temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
  
    sidebarList2 = temp4Df["fragId"]
    
    with col11:
      st.write(f":orange[not] Hits (fS2 = 0)")
      data = draw_grid(
        temp4Df, formatter=formatter, fit_columns=True, selection='none')
    
    temp4Df = gen1Df[gen1Df["accession"]==myPid]
    temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
    temp4Df = temp4Df.sort_values(by=['mdfClass', 'l2fc'], ascending=[False, True])

    sideBarList = pd.concat([sidebarList1, sidebarList2], sort=False)
    
############ Elaborates Side Bar Selection ##########################      

    # gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = temp4Df["fragId"])
    gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = sideBarList)
    st.sidebar.image(os.path.join(ROOT, "./assets/fragFiguresSingle/") + gen2Id + ".png")
    
############ Elaborates Fragment Centric View ##########################      

    st.subheader(f"Proteins competed by **:blue[{gen2Id}]**")
    
    gen2Df = gen1Df[gen1Df["fragId"]==gen2Id]
    
    tempDf3 = applyFilters(gen2Df, '< 0.05', '< 0.25', 'Low')
    tempDf3 = tempDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
    
    [bestProt2, numProtHits2, protRank2, varText3, varText4] = getVarText(tempDf3)
    
    st.write(f"**:blue[{len(gen2Df.index)}]** proteins were reduced in **:blue[{gen2Id}] competition** experiment (Fc compared to **{fragId}** control). **:blue[{numProtHits2}]** of those proteins are labelled as **hits** by applying **low** filter Set **(:blue[fS2])**. **:blue[{bestProt2}]** {varText4} **hit**. **:blue[{selectedGeneName}]** {varText3} **:blue[{protRank2}]**.")
    
    col1, col2, col3, colX, colY, colZ = st.columns(6)
    with col1:
      pFilterFP = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'), key = 'pFilterFP')
    with col2:
      pAdjFilterFP = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', 'no filter', '< 0.1', '< 0.05'), key = 'pAdjFilterFP')
    with col3:
      help_input2='''
      
      **:blue[0]**.  no filter\n
      **:blue[1]**.  Low Confidence ('**:blue[hits]**'): Fc < -1,   p < 0.05, adj.p < 0.25, Rank < 500\n
      **:blue[2]**.  Medium confidence (also '**:blue[hits]**'): Fc < -1.65, p < 0.05, adj.p < 0.25, Rank < 500\n
      **:blue[3]**.  High Confidence (also '**:blue[hits]**'):  Fc < -2.3, p < 0.01, adj.p < 0.1,  Rank < 500'''
      mdfClassFP = st.selectbox(label = "Gen2 Fragment filter Set (**:blue[fS2]**)", help = help_input2, options = ('Low (hits)', 'Medium (hits)', 'no filter', 'High (hits)'), key = 'mdfClassFP')
    
    if len(tempDf3.index) == 0:
      st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
      gen2Df2 = applyFilters(gen2Df, 'no filter', 'no filter', 'no filter')
      
    else:  
      gen2Df2 = applyFilters(gen2Df, pFilterFP, pAdjFilterFP, mdfClassFP)
      
    gen2Df2 = gen2Df2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
    
    col8, col9  = st.columns(2)
    with col8:
      formatter = {
      'accession': ('Protein', {**PINLEFT, 'width': 15}),
      'geneName': ('Gene', {**PINLEFT, 'width': 15}),
      'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
      'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
      'ligHits': ('# Gen2 Fragment Hits', {'width': 15}),
      'mdfClass': ('fS2', {'width': 10})
      }
      data = draw_grid(
        gen2Df2, formatter=formatter, fit_columns=True, selection='none', max_height=340)
    with col9:
      st.image(os.path.join(ROOT, "./assets/gen2VolcanoPlots/") + gen2Id + ".png")