File size: 15,891 Bytes
5a5d9ef 8290bb0 5a5d9ef 8290bb0 5a5d9ef 8290bb0 5a5d9ef 436d5a1 5a5d9ef 436d5a1 5a5d9ef 436d5a1 5a5d9ef 436d5a1 5a5d9ef 436d5a1 5a5d9ef 436d5a1 5a5d9ef 436d5a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# streamlit_app.py
import streamlit as st
import pandas as pd
pd.options.mode.chained_assignment = None # default='warn'
import numpy as np
from io import BytesIO
import os
import sys
# relative imports
ROOT = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(ROOT, "./src/"))
from agstyler import PINLEFT, PRECISION_TWO, draw_grid
st.set_page_config(
page_title="Fragment-Protein interactions in Chemical Proteomics Screening",
page_icon=":home:",
layout="wide", # "centered",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.css-13sdm1b.e16nr0p33 {
margin-top: -75px;
}
</style>
""", unsafe_allow_html=True)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
#header {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
pIdDf = pd.read_csv(os.path.join(ROOT, "./data/general/proteinNames4.tsv"), sep="\t")
pId = pIdDf['UniProtID'].values
pIdDes = pIdDf['Description'].values
def applyFilters(df, pFil, pAdjFil, hitFil):
if pFil != 'no filter':
if pFil == '< 0.05':
df = df[df['ml10p'] > 1.30103]
else:
df = df[df['ml10p'] > 2]
if pAdjFil != 'no filter':
if pAdjFil == '< 0.05':
df = df[df['ml10adjP'] > 1.30103]
elif pAdjFil == '< 0.1':
df = df[df['ml10adjP'] > 1]
else:
df = df[df['ml10adjP'] > 0.60206]
if hitFil != 'no filter':
if hitFil == 'Low':
df = df[df['mdfClass'] >= 1]
elif hitFil == 'Medium (hits)':
df = df[df['mdfClass'] >= 2]
elif hitFil == 'Low (hits)':
df = df[df['mdfClass'] >= 1]
else:
df = df[df['mdfClass'] == 3]
return df
def getVarText(df):
if (len(df.index)) > 0:
bestProt = df["geneName"].values[0]
numProtHitss = len(df.index)
df.index = np.arange(1,len(df)+1)
protList = df.index[df["accession"]==myPid].tolist()
if len(protList) > 0:
protRank = protList[0]
varText1 = "hit rank is"
varText2 = "is best"
else:
varText1 = "is not a hit"
protRank = ""
varText2 = "protein is best"
del protList
else:
bestProt = "No "
numProtHitss = 0
varText1 = "is not a hit"
protRank = ""
varText2 = ""
return [bestProt, numProtHitss, protRank, varText1, varText2]
st.sidebar.title("Fragment-Protein Interactions")
st.title("Chemical Proteomics Screening")
help_input3='''
use **:blue[UniProt Accession]**, Short Gene Name(s) or Protein Description to search\n
**Tip**:\n
To change selected protein, **:red[NO]** need to select whole existing term, delete and type new.\n
:blue[Just start to type new protein, old text will be automatically cleared]'''
pIdIndex = st.sidebar.selectbox(label = "Select Protein", help = help_input3, options = range(len(pIdDes)), format_func= lambda x: pIdDes[x], index= 1706)
myPid = pId[pIdIndex]
intDfOri = pd.read_csv(os.path.join(ROOT, "./data/general/finalScreenTSV00"), sep="\t")
column_names = intDfOri.columns
finalScreenSuffixes = ["01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13"]
for eachSuffix in finalScreenSuffixes:
fileAppend = "./data/general/finalScreenTSV" + eachSuffix
df_temp = pd.read_csv(os.path.join(ROOT, fileAppend), header=None, sep="\t")
df_temp.columns = intDfOri.columns
intDfOri = pd.concat([intDfOri, df_temp], ignore_index=True)
#intDfOri = pd.read_csv(os.path.join(ROOT, "./data/general/finalScreen.tsv"), sep="\t")
fpDf = pd.read_csv(os.path.join(ROOT, "./data/general/finalFpTSV00"), sep="\t")
column_names = fpDf.columns
finalFpSuffixes = ["01", "02"]
for eachSuffix in finalFpSuffixes:
fileAppend = "./data/general/finalFpTSV" + eachSuffix
df_temp = pd.read_csv(os.path.join(ROOT, fileAppend), header=None, sep="\t")
df_temp.columns = fpDf.columns
fpDf = pd.concat([fpDf, df_temp], ignore_index=True)
#fpDf = pd.read_csv(os.path.join(ROOT, "./data/general/finalFp.tsv"), sep="\t")
intDf = intDfOri[intDfOri["accession"]==myPid]
if len(intDf) == 0:
st.sidebar.write("We did **:red[not]** detect selected protein interacting with any fragment in our screen, try another protein")
else:
selectedGeneName = intDf["geneName"].values[0]
tempDf = applyFilters(intDf, '< 0.05', '< 0.25', 'Medium (hits)')
if (len(tempDf.index)) > 0:
tempDf = tempDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
bestFrag = tempDf["fragId"].values[0]
top5Frags = tempDf["fragId"].values[0:5]
numLigaHits = len(tempDf.index) # numLigaHits is already present in base input table
varText3 = "is best"
else:
bestFrag = "No"
varText3 = ""
numLigaHits = 0
######## Screening Protein Centric View ############
st.write("**Selected Protein**: ", pIdDes[pIdIndex])
st.markdown("""---""")
st.subheader(f"First generation fragments (Gen1) that enrich **:blue[{selectedGeneName}]** over background")
numInt = len(intDf.index)
st.write(f"**:blue[{numInt}]** (out of 407 screened) Gen1 fragments enrich **{selectedGeneName}**. **:blue[{numLigaHits}]**/{numInt} fragments are labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestFrag}]** {varText3} **hit**.")
if (numLigaHits/407)>0.1:
hitRatio = np.round((numLigaHits/407)*100, 1)
st.write(f"**:blue[{selectedGeneName}]** is a **:red[promiscuous]** protein (**hit**/enriched ratio is **:red[{hitRatio}]**%).")
col1, col2, col3, colX, colY, colZ = st.columns(6)
with col1:
pFilter = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'))
with col2:
pAdjFilter = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', '< 0.1', 'no filter', '< 0.05'))
with col3:
help_input='''
**:blue[0]**. no filter\n
**:blue[1]**. Low Confidence: Fc > 1, Median > 1, p < 0.05, adj.p < 0.25, Rank < 500\n
**:blue[2]**. Medium confidence ('**:blue[hits]**'): Fc > 2.3, Median > 1, p < 0.05, adj.p < 0.25, Rank < 500\n
**:blue[3]**. High Confidence (also '**:blue[hits]**'): Fc > 2.3, Median > 2.3, p < 0.01, adj.p < 0.1, Rank < 500'''
mdfClass = st.selectbox(label = "filter Set (**:blue[fS]**)", help = help_input, options = ('Medium (hits)', 'no filter', 'Low', 'High (hits)'))
if len(tempDf.index) == 0:
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
intDf = applyFilters(intDf, 'no filter', 'no filter', 'no filter')
else:
intDf = applyFilters(intDf, pFilter, pAdjFilter, mdfClass)
del tempDf
intDf = intDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
col4, col5 = st.columns(2)
with col4:
formatter = {
'fragId': ('Fragment', {**PINLEFT, 'width': 10}),
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
'protHits': ('# Protein Hits', {'width': 15}),
'mdfClass': ('fS', {'width': 10})
}
data = draw_grid(intDf, formatter=formatter, fit_columns=True, selection='none', max_height=340)
with col5:
st.image(os.path.join(ROOT, "./assets/proteinCentric/") + myPid + ".png")
fragId = st.sidebar.selectbox(label = "Select Gen1 Fragment", options = intDf["fragId"])
intDf2 = intDfOri[intDfOri["fragId"]==fragId]
############ Screening Fragment Centric ###############################
st.subheader(f"Proteins enriched by **:blue[{fragId}]**")
tempDf2 = intDfOri[intDfOri["fragId"]==fragId]
numProtDetected = len(tempDf2.index)
tempDf2 = applyFilters(tempDf2, '< 0.05', '< 0.25', 'Medium (hits)')
tempDf2 = tempDf2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
[bestProt, numProtHits, protRank, varText, varText2] = getVarText(tempDf2)
if len(tempDf2.index) == 0:
intDf3 = applyFilters(intDf2, 'no filter', 'no filter', 'no filter')
else:
intDf3 = applyFilters(intDf2, pFilter, pAdjFilter, mdfClass)
intDf3 = intDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
st.sidebar.image(os.path.join(ROOT, "./assets/fragFiguresSingle/") + fragId + ".png")
st.write(f"**:blue[{numProtDetected}]** proteins were enriched by fragment **{fragId}** (Fc compared to **CRF** control). **:blue[{numProtHits}]** of those proteins were labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestProt}]** {varText2} **hit**. **:blue[{selectedGeneName}]** {varText} **:blue[{protRank}]**.")
if (numProtHits/numProtDetected)>0.05:
fragHitRatio = np.round((numProtHits/numProtDetected)*100, 1)
st.write(f"**:blue[{fragId}]** is **:red[promiscuous]** fragment (**hit**/enriched ratio is **:red[{fragHitRatio}]**%).")
col6, col7 = st.columns(2)
with col6:
st.image(os.path.join(ROOT, "./assets/ligandVolcanoPlots/") + fragId + ".png")
with col7:
if len(tempDf2.index) == 0:
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
formatter = {
'accession': ('Protein', {**PINLEFT, 'width': 15}),
'geneName': ('Gene', {**PINLEFT, 'width': 15}),
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
'ligHits': ('# Fragment Hits', {'width': 15}),
'mdfClass': ('fS', {'width': 10})
}
data = draw_grid(
intDf3, formatter=formatter, fit_columns=True, selection='none', max_height=340)
if not isinstance(protRank, str):
if protRank < 5:
st.subheader(f"**:blue[{fragId}-{selectedGeneName}]** interaction: :first_place_medal:")
st.write(f"**:blue[{fragId}]** is in top 5 **Fragment hits** for **{selectedGeneName}**. **:blue[{selectedGeneName}]** is in top 5 **Protein hits** for **{fragId}**.")
del tempDf2
############# Fingerprinting / Elaborates Data ######################
gen2List = ["C027", "C028", "C044", "C046", "C064", "C115", "C127", "C160", "C179", "C186", "C197", "C219", "C240", "C270", "C275", "C303", "C310", "C320", "C378", "C391"]
if fragId in gen2List:
st.markdown("""---""")
# st.sidebar.markdown("""---""")
############ Elaborates Protein Centric View ##########################
st.subheader(f"Second generation fragments (Gen2) of **:blue[{fragId}]** that compete **:blue[{selectedGeneName}]**")
gen1Df = fpDf[fpDf["gen1Lig"]==fragId]
numGen2Ligs = len(np.unique(gen1Df['fragId']))
temp4Df = gen1Df[gen1Df["accession"]==myPid]
temp4Df = temp4Df[temp4Df["mdfClass"]>=1]
# temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
sidebarList1 = temp4Df["fragId"]
if len(temp4Df.index)>0:
bestGen2Lig = temp4Df['fragId'].values[0]
varText5 = "is best Gen2 fragment hit."
else:
bestGen2Lig = ""
varText5 = ""
st.write(f"**:blue[{numGen2Ligs}]** Gen2 fragments were screened in **competition** experiments against Gen1 fragment **{fragId}**. **:blue[{len(temp4Df.index)}]**/{numGen2Ligs} Gen2 fragments of **{fragId}** pass **low** filter Set (**:blue[fS2]**).")
# **:blue[{bestGen2Lig}]** {varText5}")
# **compete** **:blue[{selectedGeneName}]** after applying
formatter = {
'fragId': ('Gen2', {**PINLEFT, 'width': 10}),
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
'protHits': ('# Gen2 Protein Hits', {'width': 15}),
'mdfClass': ('fS2', {'width': 10})
}
col10, col11 = st.columns(2)
with col10:
st.write(f":blue[Hits] (fS2 > 0)")
if len(temp4Df.index)>0:
data = draw_grid(
temp4Df, formatter=formatter, fit_columns=True, selection='none')
temp4Df = gen1Df[gen1Df["accession"]==myPid]
temp4Df = temp4Df[temp4Df["mdfClass"] < 1]
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
sidebarList2 = temp4Df["fragId"]
with col11:
st.write(f":orange[not] Hits (fS2 = 0)")
data = draw_grid(
temp4Df, formatter=formatter, fit_columns=True, selection='none')
temp4Df = gen1Df[gen1Df["accession"]==myPid]
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
temp4Df = temp4Df.sort_values(by=['mdfClass', 'l2fc'], ascending=[False, True])
sideBarList = pd.concat([sidebarList1, sidebarList2], sort=False)
############ Elaborates Side Bar Selection ##########################
# gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = temp4Df["fragId"])
gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = sideBarList)
st.sidebar.image(os.path.join(ROOT, "./assets/fragFiguresSingle/") + gen2Id + ".png")
############ Elaborates Fragment Centric View ##########################
st.subheader(f"Proteins competed by **:blue[{gen2Id}]**")
gen2Df = gen1Df[gen1Df["fragId"]==gen2Id]
tempDf3 = applyFilters(gen2Df, '< 0.05', '< 0.25', 'Low')
tempDf3 = tempDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
[bestProt2, numProtHits2, protRank2, varText3, varText4] = getVarText(tempDf3)
st.write(f"**:blue[{len(gen2Df.index)}]** proteins were reduced in **:blue[{gen2Id}] competition** experiment (Fc compared to **{fragId}** control). **:blue[{numProtHits2}]** of those proteins are labelled as **hits** by applying **low** filter Set **(:blue[fS2])**. **:blue[{bestProt2}]** {varText4} **hit**. **:blue[{selectedGeneName}]** {varText3} **:blue[{protRank2}]**.")
col1, col2, col3, colX, colY, colZ = st.columns(6)
with col1:
pFilterFP = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'), key = 'pFilterFP')
with col2:
pAdjFilterFP = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', 'no filter', '< 0.1', '< 0.05'), key = 'pAdjFilterFP')
with col3:
help_input2='''
**:blue[0]**. no filter\n
**:blue[1]**. Low Confidence ('**:blue[hits]**'): Fc < -1, p < 0.05, adj.p < 0.25, Rank < 500\n
**:blue[2]**. Medium confidence (also '**:blue[hits]**'): Fc < -1.65, p < 0.05, adj.p < 0.25, Rank < 500\n
**:blue[3]**. High Confidence (also '**:blue[hits]**'): Fc < -2.3, p < 0.01, adj.p < 0.1, Rank < 500'''
mdfClassFP = st.selectbox(label = "Gen2 Fragment filter Set (**:blue[fS2]**)", help = help_input2, options = ('Low (hits)', 'Medium (hits)', 'no filter', 'High (hits)'), key = 'mdfClassFP')
if len(tempDf3.index) == 0:
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
gen2Df2 = applyFilters(gen2Df, 'no filter', 'no filter', 'no filter')
else:
gen2Df2 = applyFilters(gen2Df, pFilterFP, pAdjFilterFP, mdfClassFP)
gen2Df2 = gen2Df2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
col8, col9 = st.columns(2)
with col8:
formatter = {
'accession': ('Protein', {**PINLEFT, 'width': 15}),
'geneName': ('Gene', {**PINLEFT, 'width': 15}),
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
'ligHits': ('# Gen2 Fragment Hits', {'width': 15}),
'mdfClass': ('fS2', {'width': 10})
}
data = draw_grid(
gen2Df2, formatter=formatter, fit_columns=True, selection='none', max_height=340)
with col9:
st.image(os.path.join(ROOT, "./assets/gen2VolcanoPlots/") + gen2Id + ".png")
|